• Title/Summary/Keyword: Safe design

Search Result 2,025, Processing Time 0.027 seconds

Effect of different levels of protein concentrates supplementation on the growth performance, plasma amino acids profile and mTOR cascade genes expression in early-weaned yak calves

  • Peng, Q.H.;Khan, N.A.;Xue, B.;Yan, T.H.;Wang, Z.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Objective: This study evaluated the effects of different levels of protein concentrate supplementation on the growth performance of yak calves, and correlated the growth rate to changes occurring in the plasma- amino acids, -insulin profile, and signaling activity of mammalian target of rapamycin (mTOR) cascade to characterize the mechanism through which the protein synthesis can be improved in early weaned yaks. Methods: For this study, 48 early (3 months old) weaned yak calves were selected, and assigned into four dietary treatments according to randomized complete block design. The four blocks were balanced for body weight and sex. The yaks were either grazed on natural pasture (control diet) in a single herd or the grazing yaks was supplemented with one of the three protein rich supplements containing low (17%; LP), medium (19%; MP), or high (21%; HP) levels of crude proteins for a period of 30 days. Results: Results showed that the average daily gain of calves increased (0.14 vs 0.23-0.26 kg; p<0.05) with protein concentrates supplementation. The concentration of plasma methionine increased (p<0.05; 8.6 vs $10.1-12.4{\mu}mol/L$), while those of serine and tyrosine did not change (p>0.05) when the grazing calves were supplemented with protein concentrates. Compared to control diet, the insulin level of calves increased (p<0.05; 1.86 vs $2.16-2.54{\mu}IU/mL$) with supplementation of protein concentrates. Addition of protein concentrates up-regulated (p<0.05) expression of mTOR-raptor, mammalian vacuolar protein sorting 34 homolog, the translational regulators eukaryotic translation initiation factor 4E binding protein 1, and S6 kinase 1 genes in both Longissimus dorsi and semitendinosus. In contrast, the expression of sequestosome 1 was down-regulated in the concentrate supplemented calves. Conclusion: Our results show that protein supplementation improves the growth performance of early weaned yak calves, and that plasma methionine and insulin concentrations were the key mediator for gene expression and protein deposition in the muscles.

Aircraft configuration selection method using the airworthiness certification and the decision making process (항공안전 규정 및 의사결정모델을 이용한 항공기 형상선정기법 연구)

  • Yoon, Jung-Won;Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2010
  • For the very light jet aircraft design, the design baseline configuration has been selected using the logical decision making process, and the design optimization problem is formulated by considering the airworthiness regulations as design constraints. Airworthiness regulations are the minimum requirements for the safe aircraft flight and must be considered from the conceptual design stage. After carefully selecting the airworthiness constraints and the user specified requirements, a series of design making models including the affinity diagram, nested column diagram, quality function deployment (QFD), Pugh concept selection matrix, are used to find and evaluate alternative configuration baselines. From the feasible design space searching process, the best altenative design, which satisfies the airworthiness constraints while excluding the user subjective decisions as much as possible, has been successfully derived.

Optimum Intensity for Seismic Design of Major Man-made Structures in Korea (한반도내(韓半島內) 주요(主要) 인공구조물(人工構造物)의 적정(適正) 내진설계진도(耐震設計震度))

  • Kim, Sung Kyun
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.297-304
    • /
    • 1986
  • Earthquake disaster is dependent upon both site intensity and strength of structures. The higher the strength, structures become more safe, which in turn increases the construction cost. Therefore, it is necessary to decide an optimum design intensity in which the safety is balanced with the cost. Such an optimum design intensity for major man-made structures in Korea is determined in the present study from a simulation model as follows. 1) Hypothetical earthquake time series are generated from the probability distribution to represent appropriately the seismicity of Korea. 2) The strength of structures constructed with a certain design intensity is assumed to exponentially decrease with the elapsed time. The construction cost is also expressed as a function of design intensity. 3) Comparing the seismic intensity generated from the earthquake time series with the strength of structures, the safety of structures is examined. Then the time until the structure is damaged by an earthquake is obtained within the designed life time. 4) The above simulation is iterated several hundred times and hence the mean life time of structures having a certain design intensity is obtained. 5) After all, the optimum design intensity to minimize the annual mean loss, the ratio of construction cost to mean life time, is estimated. The major conclusions obtained from the above simulation model are as follows. 1) Depending upon the designed life time ($T_p$), the optimum design intensities are appeared to be 0. 05-0. 10g for $T_p=50yr$ and 0. 08-0.13g for $T_p=100yr$. 2) According to the sensitivity analysis, the optimum design intensity increases with the rapid strength decrease of structure and decreases with the increase of initial construction cost.

  • PDF

Design of Vertically Adjustable Transition Piece of Concrete Gravity Based Substructure for Offshore Wind Turbine (수직도 조정이 가능한 콘크리트 중력식 해상풍력 지지구조물 연결부 설계)

  • Shim, WunBo;Ahn, Jin-Young;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.42-51
    • /
    • 2018
  • Verticality problem during the installation process in offshore wind turbine substructures could degrade the safety of the whole structures. Therefore, in this paper, the design of vertically adjustable transition piece(T.P.), using a PS anchor and grout of anchor socket in concrete gravity based substructure(G.B.S.), was proposed. T.P. was designed for 5MW offshore wind trubine and can adjust up to $0.5^{\circ}$ in verticality, occurred during installation. The design plan for each members and design procedure for T.P. was proposed. Then based on the proposed design, actual design targeting sea of Jeju-island was carried out. Finally, by use of non-linear 3D Finite Element Analysis(F.E.A.), evaluation of design was performed. As a result of evaluation, by checking load transfer mechanism and stress of T.P, proposed design was considered safe up to $0.5^{\circ}$ of adjustment.

A Study on Safe Separation Distance between Tunnel and Interchange (터널과 입체 교차로간의 안전한 이격거리 연구)

  • Lee, In-Bae;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.273-279
    • /
    • 2019
  • Development of mountain area is increasing due to the demand for improvement of traffic convenience and development of underdeveloped area. Therefore, there frequently are sections where tunnels and interchanges are located close to each other. These sections do not only affect tunnel planning, types and length of interchanges, but also affect more on route selection. In Korea, several design criteria present each reference value but these values are very similar. In the situation, the minimum value among them is usually applied when planning roads and it could cause traffic safety problems in different site conditions. In this study, the problems of design speed, illuminance adaptation distance, and lane change intervals are analyzed by simulating the cases that the problem could occur when calculating the separation distance between tunnel and interchange. The results obtained from this study can be summarized as following: the driving speed should be applied in case that the site has a big gap between design speed and driving speed because the uniform application of the design speed is not safe; the illuminance adaptation distance should include the influence distance in the section affected by the direct light; in addition, the lane change distance should include the time to perceive the situation of the next lane after the lane change in the section required for successive lane change.

A Study on Seismic Design Method Considering Physical Properties of Piping Material (배관 재료의 물성을 고려한 내진설계 방법에 관한 연구)

  • Bang, Dae-Suk;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • In this study, we compare the engineering seismic design method considering the physical properties of piping materials and the specification-oriented design method according to the seismic design standards of fire fighting equipment. In the case of the seismic design method considering the physical properties of piping materials, the safety of the piping will be analyzed through the combined value of the torsional stress and the bending stress generated in the piping. However, in the case of the design-centered design method, instead of the safety of the piping material, it calculates the moving force of the pipe and interprets whether or not the shaking prevention strut can bear. Fire extinguishing equipment piping is possible through safety analysis of stress and displacement of piping material because piping safety can not be secured via unstable force generated in a certain section with one connected structure is there. Therefore, it is necessary to apply analytical method considering seismic performance of building structure and material properties of piping for seismic design of safe fire extinguishing system piping.

A Study on Elderly Nursing Home Design Direction Based on Yalom's Existential Psychotherapy (얄롬의 실존주의 심리치료에 의거한 노인요양시설 디자인 방향에 대한 연구)

  • Chung, Miryum
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.3
    • /
    • pp.186-196
    • /
    • 2015
  • This research comprehended the fundamental cause of elderly nursing home residents' negative feelings of loneliness, depression, fear, and loss of self-usefulness as existential issue, since they already went through loss, death of loved ones, geriatric disease and disability. The purpose of this research is to explore how existentialism and existential psychotherapy theory of Irvin D. Yalom can be applied to nursing home environment design, and to suggest design directions. Based on his framework of human's ultimate interest, death, freedom followed by responsibility, isolation, and meaninglessness, interior design suggestions and applicable spaces were presented. Four cases from Australia, Denmark, Japan and Korea were analyzed according to design suggestions to grasp the current situation and to draw further proposition. The conclusions are as follows. (1)Environment should support nursing home residents to resolve existential issues. (2)Death is the least supported issue on all of the cases. Environmental elements that can induce residents to think and discuss on death, hospice program and space for memorial service is necessary. (3)Regarding to freedom, the environment should support resident's disability to maintain independence as much as possible and residents autonomy and decision should be respected. Single/double rooms, motorized bed, free and safe usage of kitchen and garden are necessary. (4)For isolation, Space and time for meditation should be provided. (5)To find meaning of life, environment should support residents in both physical and cognitive aspect so that they can contribute to others. Space for hobby is necessary for continued creativity and self-realization.

A study about determination of preliminary design & minimum reinforcement ratios

  • KOC, Varol;EMIROGLU, Yusuf
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.673-692
    • /
    • 2016
  • In the standards, minimum reinforcement ratios are presented as the least reinforcement ratios that bearing elements should have in a way to include all systems and in general. However, naturally these general minimum ratios might be presented as being lower than the normally required reinforcement ratios by criteria such as system size, bearing system arrangement, section situation and distributions of the elements and earthquake effect. In this case, minimum reinforcement ratios may remain as meaningless restrictions. Then grouping the criterion that might affect reinforcement ratios according to certain parameters and creating minimum reinforcement ratios regarding preliminary design will provide ease and safety during the project designing. Moreover, it will enable fast and simple examinations in the beginning of project control and evaluation process. By means of the data which could be defined as "preliminary design & minimum reinforcement ratios", a more realistic and safe restriction compared to general minimum reinforcement ratios could be presented. As a result of numerous comprehensive studies, reinforcement ratios to include all certain systems might be obtained. Today, thanks to the development level of finite elements programs which can make reinforced concrete modelling, with the studies that are impossible to carry out beforehand, this deficiency in the minimum reinforcement ratios in the standarts may at least be partially made up with the advisory regulation of preliminary design & minimum reinforcement ratios. As the structure of the system to be examined and the diversity of the parameters range from the specific to the general, preliminary design & minimum reinforcement ratios will approximate to general minimum reinforcement ratios in real terms. By focusing on a more specific system structure and diversity of the parameters, preliminary design and even design reinforcement ratios will be approximated. In this preliminary study, a route between these two extremes was attempted to be followed. Today, it is possible to determine suggested practical ratios for project designs through carrying out numerous studies.

A Study on the Design Guidelines of the Elderly Walker for safety walking (고령자의 안전한 보행을 지원하기 위한 보행기 디자인지침 연구)

  • Lee, Hyun-Uk;Yang, Sung-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.161-168
    • /
    • 2020
  • This study is designed to develop a walker to assist the elderly in safe, independent walking. To this end, problems were identified through analysis of the walker for the elderly and user observations were used to identify problems and needs. The product analysis showed that most elderly walkers tend to prioritize their functions. In addition, user observations showed that most users had positive perceptions about the function, but that structural aspects, such as operation methods and stability, had negative consequences. A total of five design guidelines were derived based on the problems and needs derived. The design guidelines were designed to focus on improving structural problems rather than functional parts, and to orientate safety over functional priorities. Five design guidelines derived from this study could be used as basic data for the manufacture of walkers that reflect the views and needs of the elderly in the future in the manufacture and design of walkers for the elderly.

Seismic Performance of High-rise Concrete Buildings in Chile

  • Lagos, Rene;Kupfer, Marianne;Lindenberg, Jorge;Bonelli, Patricio;Saragoni, Rodolfo;Guendelman, Tomas;Massone, Leonardo;Boroschek, Ruben;Yanez, Fernando
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.181-194
    • /
    • 2012
  • Chile is characterized by the largest seismicity in the world which produces strong earthquakes every $83{\pm}9years$ in the Central part of Chile, where it is located Santiago, the capital of Chile. The short interval between large earthquakes magnitude 8.5 has conditioned the Chilean seismic design practice to achieve almost operational performance level, despite the fact that the Chilean Code declares a scope of life safe performance level. Several Indexes have been widely used throughout the years in Chile to evaluate the structural characteristics of concrete buildings, with the intent to find a correlation between general structural conception and successful seismic performance. The Indexes presented are related only to global response of buildings under earthquake loads and not to the behavior or design of individual elements. A correlation between displacement demand and seismic structural damage is presented, using the index $H_o/T$ and the concrete compressive strain ${\varepsilon}_c$. Also the Chilean seismic design codes pre and post 2010 Maule earthquake are reviewed and the practice in seismic design vs Performance Based Design is presented. Performance Based Design procedures are not included in the Chilean seismic design code for buildings, nevertheless the earthquake experience has shown that the response of the Chilean buildings has been close to operational. This can be attributed to the fact that the drift of most engineered buildings designed in accordance with the Chilean practice falls below 0.5%. It is also known by experience that for frequent and even occasional earthquakes, buildings responded elastically and thus with "fully operational" performance. Taking the above into account, it can be said that, although the "basic objective" of the Chilean code is similar to the SEAOC VISION2000 criteria, the actual performance for normal buildings is closer to the "Essential/Hazardous objective".