• 제목/요약/키워드: Safe Driving System

검색결과 214건 처리시간 0.029초

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • 대한인간공학회지
    • /
    • 제35권1호
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

화물자동차 UBI 도입을 위한 운행 평가 모델 구축 (Development of Driving Evaluation model of a truck for UBI)

  • 유검근;원종운;이석;권용장
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제6권12호
    • /
    • pp.469-481
    • /
    • 2016
  • 화물자동차 사고는 전체 교통사고의 약 12.64%를 차지하고 있다. 특히 화물자동차의 경우 사고 발생 시 피해규모가 크며 사망률도 매우 높다. 이러한 이유로 2012년도에 화물차 보험료는 대폭 인상되었고 화물자동차 운전자들의 부담이 매우 높은 실정이지만, 화물자동차의 과속, 과적 등은 줄어들고 있지 않는 추세이다. 화물자동차 운전자들이 자발적으로 안전운전을 할 수 있도록 대책을 강구하여야 한다. 본 연구에서는 현재 화물자동차 운전자들이 자발적으로 안전운전을 할 수 있는 방법 중 하나로 Usage-Based Insurance(UBI)를 선정하였다. UBI란 운전자가 안전운전을 할수록 보험료를 할인하는 제도로 화물차 운전자들이 안전운전을 하는 동시에 보험료 부담을 줄일 수 있을 것으로 기대된다. UBI를 도입하기 위해 가장 중요한 것은 운전자들의 운행 평가를 하는 방법이다. 운전자들의 운행 평가를 통해 보험료 할인/할증률을 결정할 수 있고, 합리적으로 운행 평가를 실시하여야 운전자들이 납득 할 수 있기 때문이다. 최종적으로 본 연구에서는 화물자동차의 주요 사고 원인을 규명한 뒤 각각의 사고 원인들과 사고와의 상관분석 및 다중회귀분석을 통해 운행평가모델을 구축하고자 한다.

안전한 군용 중장비 수송을 위한 차선 및 차량 진행 방향 인식 시스템 개발 - 칼만 필터와 신경망을 기반으로 - (Development of Lane and Vehicle Headway Direction Recognition System for Military Heavy Equipment's Safe Transport - Based on Kalman Filter and Neural Network -)

  • 최영윤;최광모;문호석
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.139-147
    • /
    • 2007
  • In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.

Development of a Full-Scale Driving Simulator for Human Sensibility Ergonomics Study

  • Lee, Woon-Sung;Cho, Jun-Hee;Park, Dong-Chan;Yoo, Seung-Chul;Shin, Jun-Su
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.352-357
    • /
    • 2000
  • A full-scale driving simulator is being developed as an effective test-bed for reproducing realistic driving situation in a safe and tightly controlled environment and conducting various human sensibility ergonomics studies. The simulator will be equipped with a 6 degree-of-freedom, high frequency motion base and a 4 channel, wide field-of-view visual system. The simulator will be fully interactive, highly realistic, and yet economical, taking advantages of the fast growing PC technology.

  • PDF

운전자의 특성에 따른 자동차 운전 수행도 분석 (Analysis of Driving Performances on the Characteristics of Drivers)

  • 오영진
    • 산업경영시스템학회지
    • /
    • 제21권48호
    • /
    • pp.145-152
    • /
    • 1998
  • Driving performance is characterized by many things such as driver's experience period, age, ability of information processing and reaction time of control devices and so forth. However, each factor of driving performance is needed to help and screen a poor driver for safe driving. In this paper, driving performance was estimated by reaction of manipulating brake, accelerator, steering wheel and speed. Subjects were grouped by experience of accident and age. Combinations of every group were analysed. For all the dependent variables, only steering wheel and speed were shown to have significant difference, which could be regarded as visual information of speed and direction were the important factors to drive safely. Especially for tile elderly, it is needed to enhance their ability of visual information processing that is to be decreased with aging. Therefore driving simulator to train and screen the poor driver should be studied.

  • PDF

차량 그림자를 이용한 주행 차량 검출 및 차간 거리 측정 (Driving Vehicle Detection and Distance Estimation using Vehicle Shadow)

  • 김태희;강문설
    • 한국정보통신학회논문지
    • /
    • 제16권8호
    • /
    • pp.1693-1700
    • /
    • 2012
  • 최근 차량 운전자들의 안전 운행을 보조하기 위해 운전자의 차량과 전방의 차량 간의 거리를 추정하고 안전거리 유무를 알려주기 위한 경보시스템이 개발되고 있다. 본 논문에서도 실제 도로 환경에서 전방의 주행 차량을 검출하여 차간 거리를 측정하고, 충돌 위험 상황을 감지하여 운전자에게 충돌 위험을 알리는 충돌경고시스템을 설계 및 구현하였다. 먼저 전방주시 카메라를 활용하여 촬영한 도로영상으로부터 도로와 차량에 해당하는 관심 영역을 추출하고, 관심 영역에서 전방 차량의 그림자 임계값 분석을 통해 전방 차량 객체를 추출한 후 전방 차량과의 거리를 계산하여 충돌 위험 경고를 알려준다. 주행 차량 검출 및 차간 거리 측정 결과를 기반으로 충돌경고시스템을 설계 및 구현하였으며, 실제 도로상황에 적용하여 실험한 결과 매우 높은 정확도를 나타내어 안전 운전에 대응할 수 있는 것으로 검증되었다.

기능 안전성을 위한 대칭형 각도센서 보상기에 기반한 안전한 적응형 전조등 제어기의 설계 (Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator for Functional Safety Requirement)

  • 윤지애;인멍디;안중현;조정훈;박대진
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.297-305
    • /
    • 2015
  • AFLS (Adaptive front lighting System) is being applied to improve safety in driving automotive at night. Safe embedded system for controlling head-lamp has to be tightly designed by considering safety requirement of hardware-dependent software, which is embedded in automotive ECU(Electronic Control Unit) hardware under severe environmental noise. In this paper, we propose an adaptive headlight controller with newly-designed symmetric angle sensor compensator, which is integrated with ECU-based adaptive front light system. The proposed system, on which additional backup hardware and emergency control algorithm are integrated, effectively detects abnormal situation and restore safe status of controlling the light-angle in AFLS operations by comparing result in symmetric angle sensor. The controlled angle value is traced into internal memory in runtime and will be continuously compared with the pre-defined lookup table (LUT) with symmetric angle value, which is used in normal operation. The watch-dog concept, which is based on using angle sensor and control-value tracer, enables quick response to restore safe light-controlling state by performing the backup sequence in emergency situation.

Intelligent Soft Driving System for an Electric Four-wheeled Vehicle Eluding Dynamic Obstacles

  • Inoue, Masaki;Yasunobu, Seiji
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.583-586
    • /
    • 2003
  • There are electric four-wheeled vehicles to assist elder people. Because of the vehicles'dynamic characteristic such as impossible to move abeam, it is difficult for these people who has little experience and has little knowledge to drive. Also to judge the future state of dynamic obstacles and to decide how to elude them safely are more difficult. We installed the predictive fuzzy controller(evaluates the future states which several kinds of operation candidates were done and chooses the best one) that modeled humans'algorithms in the system. Human predicts the future states of dynamic obstacles and chooses an operation(wait, steer, go back, etc) to elude safely. To elude dynamic obstacles flexibly, we added expert's knowledge for safe driving to this controller. In this paper, we propose the intelligent soft driving system by the controller that can elude dynamic obstacles safely, and we confirm the effectiveness by a simulation.

  • PDF

조향 함수를 고려한 UCT/AGV 설계 및 주행 기법에 관한 연구 (Design and Implementation of UCT/AGV Based Upon Steering Function)

  • 윤경식;진태석;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.406-406
    • /
    • 2000
  • In this study, as a part developing an unmanned container terminal (UCT), Ive designed and implemented an Autonomous Ground Vehicle (AGV) that can deliver containers in the port fast and safely as they are scheduled. It is preferable to research the intelligent UCT/AGV for delivering containers all day long without causing any trouble. For the sake of safe and fast AGV driving, we implemented a multiple-sensor system with vision, ultrasonic, and IR sensors and we adapted the hight-speed wireless LAN that satisfies the IEEE 802.11 Standard for hi-directional communication between the main processor in AGV and a host computer. The Pentium-III processor board mounted on the bottom frame in AGV combines and computes the information from sensors and controls the AGV driving. There are also the 80C196KC micro-controllers to control the actuating and steering motors. In addition, a steering function that is defined newly in this paper is heavily concerned in the mechanical design, and it plays an important role when AGV moves along a curve. Experimental results show the fast and safe delivery operations are possible with this UCT/AGV

  • PDF