• Title/Summary/Keyword: Saemangeum Basin

Search Result 16, Processing Time 0.033 seconds

Numerical Simulation for River Safety of Saemangeum Basin according to Master Plan (새만금 종합개발계획에 따른 새만금 유역 치수 안전성 수치모의)

  • Jeong, Seok il;Yoo, Hyung Ju;Ryu, Kwang Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.127-133
    • /
    • 2018
  • The Saemangeum master plan includes dredging and waterproofing materials, construction projects that can change the hydraulic characteristics of the Saemangeum and Mangyeong and Dongjin River basins. In this study, the river safety of 2030 when the Saemangeum master plan was completed for 100 year frequency, 500 year frequency and 100 year frequency applied RCP 8.5 scenario was examined using Delft3D. As a result of the analysis, it was confirmed that there was no overflowing point at the 100 year frequency, but the difference between the flood level and the river bank elevation was relatively small at the curved and river joint part. At the 100-year frequency with the 500-year frequency and the RCP 8.5 scenario, the possibility of overflowing at several locations was confirmed. The possibility of river bed loss due to fast velocity appears in the upstream part of Mankyung River and it is necessary to monitor the safety of hydraulic structures continuously. In addition, it is expected that the expansion of the area showing the characteristics of the lake due to dredging will affect the sediment mechanism and water quality, so detailed and diverse studies will be needed.

Rainfall and Water Quality Characteristics of Saemangeum Area

  • Monica, Nankya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.203-209
    • /
    • 2014
  • This study investigated characteristics of rainfall and water quality in Saemangeum area with attention to temporal and spatial distributions. A high variability in rainfall was noted during July and August. The temporal analysis of water quality data indicated that DO and TN as well as BOD, COD and SS were within national standards except for increased concentrations during spring and summer, unlike TP values that indicated poor water quality. Standard deviation showed a high variability in SS among the seasons most especially during summer. The high dispersion indicated variability in the chemical composition of pollutants where the temporal and spatial variations caused by polluting sources and/or seasonal changes were most evident for BOD and COD during winter and spring. The box plots and bar charts showed steadily low concentrations of BOD, COD, TN and TP except within Iksan and notable significant variations in SS concentrations among the monitoring stations. Thus, high pollution levels requiring intervention were identified in Mangyeong river basin with particular concern for areas represented by Iksan station. It was noted that Iksan received a considerable amount of rainfall which meant high runoff which could explain the significant pollution levels revealed in the water quality spatial distribution. Major pollution contributing pollutants within Saemangeum area were identified as SS, BOD, COD and TN. Therefore the present results could be used as a guideline for the temporal and spatial distributions analysis of both rainfall and water quality in Saemangeum watershed.

A Water Budget Analysis with Inter-basin Water Transfer Taken Spatially into Considerations (외부공급을 공간적으로 고려한 물수지 분석)

  • Yoon, Yong Nam;Kim, Tae Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 1993
  • The conventional water budget analysis methods for major water works do not take the spatial variation of available water resources into account. There has also been a tendency of over-estimation of water supply capacity when a significant inter-basin water transfer is involved. Therefore, a revised water budget analysis methodology is proposed which can take care of the spatial variation of the water resources available within the basin and with the inter-basin transferable water. For the purpose of present study, the Saemangeum project area is taken for the analysis, which includes both the Dongjin and the Mangyungs River basin, one of the regions with the most complex water utilization.

  • PDF

Analysis of Physicochemical Characteristics of Suspended Sediments Flowing into the Saemangeum Reservoir in the Summer (하절기 새만금호 유입유사의 물리화학적 특성 분석)

  • Oh, Kyoung-Hee;Chung, Se-Woong;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.99-106
    • /
    • 2015
  • To estimate the effects of suspended sediments flowing into the Saemangeum Reservoir on the extent of contamination of the reservoir, the suspended sediments were collected with sediment traps, which were installed from the upstream of the Mankyung and Dongjin Rivers to estuary of the reservoir, respectively, and the sedimentation rates and the chemical characteristics of suspended sediments were analyzed. The sedimentation rates in the Mankyung and Dongjin Rivers were ranged from 0.01~5.06 and $0.01{\sim}8.75kg/m^2/day$, respectively. Those were higher to the upstream of rivers, and were mainly affected by flood events. The concentrations of organic matters were from 3.3 to 9.6 times higher than those in the stream sediments and were higher after flood season, indicating the contaminants come from the non-point sources on the basin. The concentrations of total nitrogen and total phosphorus in the suspended sediments showed the same trend with the organic matters. These results indicate that the suspended sediments from the basin of the Mankyung and Dongjin Rivers are highly contaminated and the countermeasures to manage the sources of contamination on the basin are required to maintain the water quality of the Saemangeum Reservoir.

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

Estimating Soil Losses from Saemangeum Watershed based on Cropping Systems (작부체계를 고려한 새만금유역의 토양유실량 추정)

  • Lee, Eun-Jeong;Cho, Young-Kyoung;Park, Seung-Woo;Kim, Hak-Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.101-112
    • /
    • 2006
  • A Geographic Information System (GIS) was developed to estimate basin-wide soil losses using the Universal Soil Loss Equation (USLE). It was applied to estimate the annual average soil losses from the Saemangeum watershed. The USLE factors for each subarea of uniform land use and treatments were estimated from the GIS routines from digital topographic maps, land cover and detailed soil maps. A routine was developed to estimate the averaged cropping management factors (C) of USLE for multi-cropping farmlands, based on cropping system records from the district offices. The resulting C factors ranged from 0.28 to 0.35 for multi-cropping areas. The estimated annual average soil loss was approximately 2.9 million tonnes. Typical soil losses from different land uses were 0.8 t/ha at paddies, 33.7 t/ha at uplands and 1.1 t/ha from forested mountains. It was also found that 6.0% of the arable land of the watershed possessed high risks of soil losses, and conservation measures were needed to reduce soil losses.

Evaluation of Water Quality Characteristics of Saemangeum Lake Using Statistical Analysis (통계분석을 이용한 새만금호의 수질특성 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.297-306
    • /
    • 2023
  • Saemangeum Lake is the largest artificial lake in Korea. The continuous deterioration of lake water quality necessitates the introduction of novel water quality management strategies. Therefore, this study aims to identify the spatiotemporal water quality characteristics of Saemangeum Lake using data from the National Water Quality Measurement Network and provide basic information for water quality management. In the water quality parameters of Saemangeum Lake, water temperature and total phosphorous content were correlated, and salt, total nitrogen content, pH, and chemical oxygen demand were significantly correlated. Other parameters showed a low correlation. The spatial principal component analysis of Saemangeum Lake showed the characteristics of its four zones. The mid-to-downstream section of the river affected by freshwater inflow showed a high nutrient salt concentration, and the deep-water section of the drainage gate and the lake affected by seawater showed a high salt concentration. Two types of water qualities were observed in the intermediate water area where river water and outer sea water were mixed: waters with relatively low salt and high chemical oxygen demand, and waters with relatively low salt and high pH concentration. In the principal component analysis by time, the water quality was divided into four groups based on the observation month. Group I occurred during May and June in late spring and early summer, Group II was in early spring (March-April) and late autumn (November-December), Group III was in winter (January-February), and Group IV was in summer (July-October) during high temperatures. The water quality characteristics of Saemangeum Lake were found to be affected by the inflow of the upper Mangyeong and Dongjin rivers, and the seawater through the Garuk and Shinshi gates installed in the Saemangeum Embankment. In order to achieve the target water quality of Saemangeum Lake, it is necessary to establish water quality management measures for Saemangeum Lake along with pollution source management measures in the upper basin.

Analysis of Agricultural Water Supply System at the Dongjin-River Basin (동진강 유역의 농업용수 급수체계 분석)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • This study was investigated agricultural water supply system of major agricultural waterway for Gimje canal, Jeongeup canal, Dongjin river conduit of Dongjin river basin. Furthermore, this result will be used for water resources and agricultural demand in Saemangeum reclaimed arable land. Annual precipitation for 5 years in Dongjin river basin was 1,311.7mm. The average discharges in Dongjin river basin was $1,390{\times}10^6\;m^3$ and $1,516{\times}10^6\;m^3$ and $744{\times}10^6\;m^3$ for 2,007 and 2008, respectively. Also, annual average amount of water resources was 1,861${\times}10^6\;m^3$ and $2,279{\times}10^6\;m^3$ and $1,227{\times}10^6\;m^3$ for 2,007 and 2008, respectively. Dongjin river basin water system for the analysis of agricultural water in water resources, runoff, agricultural water demand and usage surveys were analyzed, resulting in the total amount of water due to precipitation of the watershed of the $12.3{\times}10^9\;m^3$ ~$22.8{\times}10^9\;m^3$ and Dongjin River basin in waters flowing discharge is $7.4{\times}10^9\;m^3$~$16.1{\times}10^9\;m^3$, agricultural water demand and usage of each of $6.8{\times}10^9\;m^3$~$6.9{\times}10^9\;m^3$ and $4.9{\times}10^9\;m^3$~$7.1{\times}10^9\;m^3$ compared to the agricultural water demand was more likely. Agricultural water supply system in Dongjin river basin is complex because of devided branches to the main canal and branch canal. In this process, accurately assessment of water usage is very difficult. Therefore, systematic management of water resources and supply of agricultural water supply system to use the terms of the complexity and diversity by considering the appropriate level of agricultural water management systems will be needed. As a result of this study, it can be used water resources assessment in quantity, rational usefulness and basic planning of water resources development for water distribution.

Estimation in changes of Tidal Areas due to seawater circulation in Mangyung water area (만경수역의 해수유통으로 인한 조간대 면적변화 추정)

  • Cheon, Gi-Seol;Park, Yeong-Wook;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.133-136
    • /
    • 2002
  • A simulation by the TOPAS model, two dimensional finite difference model was performed on the flows through drainage lock gate for the Saemangeum tidal reclamation project. Analysis focus on the changes of intertidal zone areas according to the operation scheme of the gate. The intertidal zone areas were analyzed as $66{\sim}70\;km^2$ when the opening of the gate was 300 m. It occupied about $85{\sim}90%$ of intertidal zone areas compared to that the Mangyung sea basin was opened without sea-dike. It appeared to be the most effective in terms of securing enough intertidal zone areas when the gate was operated as inflowing sea-water after 2 day's drainage.

  • PDF