• Title/Summary/Keyword: Sacrificial anode cathodic protection

Search Result 44, Processing Time 0.023 seconds

Electrochemical Characteristics of Zn-mesh Cathodic Protection Systems in Concrete in Natural Seawater at Elevated Temperature

  • Kim, Ki-Joon;Jung, Jin-A;Lee, Woo-Cheol;Jang, Tae-Seub
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.269-274
    • /
    • 2007
  • The corrosion of steel in concrete is significant in marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood so far. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100 cm column specimens with eight of 10 cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both $10^{\circ}C$ and $40^{\circ}C$ in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode.

Distribution of Cathodic Protection Potential for Concrete Slab Specimens at Diverse Environmental Conditions

  • Jin, Chung-Kuk;Jeong, Jin-A
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • This study represents the recent laboratory results from cathodic protection (CP) system with the use of sacrificial anodes at different environmental conditions (temperature of $10^{\circ}C$ and $40^{\circ}C$). Specimens were slab type with a dimension of $500mm{\times}50mm{\times}100mm$, and concrete cover thickness were 25mm. Zinc mesh and/or bulk type anodes were installed at the center of specimen to confirm the distance that CP system has influences on the specimen to distribute uniform CP current to rebar. Two different kinds of temperature condition were applied to verify the effect of temperature. Experiments were conducted for 60 days, and the distribution of potential and current that supplied from anode to rebar was measured. From the results, CP potential was varied with time, and temperature played an important role in CP potential variations. Current was also changed with time, and current distribution could be improved by installing additional bulk type anode.

Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode (AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구)

  • Son, Yeong-Tae;Lee, Myeong-Hun;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF

Numerical Analysis of Cathodic Protection Effect by Sacrificial Anode Attached to Condenser of Power Plant (희생양극법에 의한 발전소 복수기의 음극방식효과에 대한 수치해석)

  • Kim, Jang-Sun;Bae, Byeong-Hong;Kim, Ui-Hyeon;Lee, Chung-Geun;Kim, Jong-Yeong
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.842-849
    • /
    • 1995
  • The effect of cathodic protection by the sacrificial anode attached to condenser waterbox of power plant was investigated using numerical analysis. The condenser is consisted of various materials. So in case of no protection, the serious galvanic corrosion between waterbox and tubesheet was observed. If sacrificial anodes were attached to the wall of waterbox or the area corroded galvanically, the large protection effect was showed. To demonstrate the validity of numerical analysis results, model test was executed. The numerical solution was consistent with the experimental vague well.

  • PDF

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF

A Study on the Post-Weld Heat Treatment Effect Affecting Corrosion Behavior and Mechanical Property of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강 용접부의 부식거동 및 기계적 특성에 미치는 용접후 열처리 효과에 관한 연구)

  • 김성종;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 2001
  • A study on the corrosion behavior in case of As-welded and PWHT temperature 55$0^{\circ}C$ of welding part of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential measurement of weld metal(WM), base metal(BM) and heat affected zone(HAZ), both Al anode generating current and Al anode weight loss quantity under sacrificial anode cathodic protection conditions. And also we carried out slow strain rate test(SSRT) in order to research both limiting cathodic polarization potential for hydrogen embrittlement and optimum cathodic protection potential as well as mechanical properties by post-weld heat treatment(PWHT) effect. Hardness of HAZ was the highest among three parts(WM, BM and HAZ) and the highest galvanic corrosion susceptibility was HAZ. And the optimum cathodic polarization potential showing the best mechanical properties by SSRT method was from -770mV to -875mV(SCE). In analysis of SEM fractography, applied cathodic potential from -770mV to -875mV(SCE) it appeared dimple pattern with ductile fracture while it showed transgranular pattern (Q. C : quasicleavage) under -900mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement was under -900mV(SCE).

  • PDF

Optimum Cathodic Protection for Stainless Steel Shaft of Small-Size Boat (소형선박용 스테인리스강 축의 음극방식 응용)

  • Bae, I.Y.;Park, J.D.;Kang, D.S.;Lee, M.H.;Kim, K.J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.232-233
    • /
    • 2005
  • Stainless steel has been stably used closed by passivity oxidation films($Cr_2O_3$) is made by neutral atmospheric environment. However, passivity oxidation films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having halogen ion like $Cl^-$, then, localization corrosion comes to occur. Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS 304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc.. According to the comparison and analysis of Stainless steel 304 shaft materials after simulation leaving unprotected and applying cathodic protection, unprotected shaft specimen of stainless steel 304 was severely corroded, but, protected shaft specimen was not totally corroded. This result is assumed to be made by the facts that anodic reaction, $Fe{\rightarrow}Fe^{2+}$ + $2e^-$, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

A Study on Analysis Method of Underwater Electric Field Signature due to Ship's Corrosion and Corrosion Protection System (선체 부식 및 부식 방지장치에 의한 수중 전기장 신호 해석 방안 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The galvanic corrosion of a vessel, or systems fitted to minimize the ship's corrosion such as ICCP (Impressed Current Cathodic Protection) system and sacrificial anodes, can lead to significant electrical current flow in the sea. The presence of vessel's current sources associated with corrosion will give rise to detectable electric field surrounding the vessel and can put it at risk from mine threats. For this reason, it is necessary to design corrosion protection systems so that they don't only prevent a hull corrosion but also minimize the electric field signature. In this paper, we describe theoretical backgrounds of underwater electric field signature due to corrosion and corrosion protection system on naval vessels and analysis results of the electric field according to the ship's hull and it's propeller coating damage and ICCP anode displacement.

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.