• Title/Summary/Keyword: Saccharopolyspora erythraea

Search Result 4, Processing Time 0.018 seconds

Cloning and Characterization of a Gene Encoding $\gamma-Butyrolactone$ Autoregulator Receptor from Saccharopolyspora erythraea

  • LEE YONG-JIK;YEO SOO-HWAN;LEE IN SEON;LEE SAM-PIN;KITANI SHIGERU;NIHIRA TAKUYA;KIM HYUN SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2006
  • A gene encoding a $\gamma-butyrolactone$ autoregulator receptor was cloned from Saccharopolyspora erythraea, and the biochemical characteristics, including the autoregulator specificity, were determined with the purified recombinant protein. Using primers designed for the conserved amino acid sequence of Streptomyces $\gamma-butyrolactone$ autoregulator receptors, a 120 bp S. erythraea DNA fragment was obtained by PCR. Southern and colony hybridization with the 120 bp fragment as a probe allowed to select a genomic clone of S. erythraea, pESG, harboring a 3.2 kb SacI fragment. Nucleotide sequencing analysis revealed a 615 bp open reading frame (ORF), showing moderate homology (identity, $31-34\%$; similarity, $45-47\%$) with the $\gamma-butyrolactone$ autoregulator receptors from Streptomyces sp., and this ORF was named seaR (Saccharopolyspora erythraea autoregulator receptor). The seaR/pET-3d plasmid was constructed to overexpress the recombinant SeaR protein (rSeaR) in Escherichia coli, and the rSeaR protein was purified to homogeneity by DEAE-Sephacel column chromatography, followed by DEAE-ion-exchange HPLC. The molecular mass of the purified rSeaR protein was 52 kDa by HPLC gel-filtration chromatography and 27 kDa by SDS-polyacrylamide gel electrophoresis, indicating that the rSeaR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that rSeaR has clear binding activity with a VB-C-type autoregulator as the most effective ligand, demonstrating for the first time that the erythromycin producer S. erythraea possesses a gene for the $\gamma-butyrolactone$autoregulator receptor.

Cloning of Autoregulator Receptor Gene form Saccharopolyspora erythraea IFO 13426 (Saccharopolyspora erythraea IFO 13426으로부터 Autoregulator Receptor Protein Gene의 Cloning)

  • 김현수;이경화;조재만
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • For screening of autoregulator receptor gene from Saccharopolyspora erythraea, PCR was performed with primers of receptor gene designed on the basis of amino acid sequences of autoregulator receptor proteins with known function. PCR products were subcloned into the BamHI site of pUC19 and transformed into the E. coli DH5$\alpha$. The isolated plasmid from transformant contained the fragment of 120 bp, which was detected on 2% gel after BamHI treatment. The insert, 120 bp PCR product, was confirmed as the expected internal segment of gene encoding autoregulator receptor protein by sequencing. Southern and colony hybridization using Saccha. erythraea chromosomal DNA were performed with the insert as probe. The plasmid (pEsg) having 3.2 kbp SacI DNA fragment from Saccha. erythraea is obtained. The 3.2 kbp SacI DNA fragment was sequenced by the dye terminator sequencing. The nucleotide sequence data was analyzed with GENETYX-WIN (ver 3.2) computer program and DNA database. frame analyses of the nucleotide sequence revealed a gene encoding autoregulator receptor protein which is a region including KpnI and SalI sites on 3.2 kbp SacI DNA fragment. The autoregulator receptor protein consisting of 205 amino acid was named EsgR by author. In comparison with known autoregulator receptor proteins, homology of EsgR showed above 30%.

Functional analysis of seaR protein identified from Saccharopolyspora erythraea (희소방선균의 seaR 단백질 발현을 통한 기능 분석)

  • Ryu, Jae Ki;Kwon, Pil-Seung;Lee, Hyeong Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Secondary metabolism in actinomycetes has been known to be controlled by a small molecule, ${\gamma}$-butyrolactone autoregulator, the binding of which to each corresponding receptor leads to the regulation of the transcriptional expression of the secondary metabolites. We expected that expression of an autoregulator receptor or a pleiotropic regulator in a non-host was to be gained insight of effective production of new metabolic materials. In order to study the function of the receptor protein (seaR), which is isolated from Saccharopolyspora erythraea, we introduced the seaR gene to Streptomyces coelicolor A3(2) as host strains. An effective transformation procedure for S. coelicolor A3(2) was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP and $ermEp^*$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. coelicolor A3(2) by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Exconjugant of S. coelicolor A3(2) containing the seaR gene was confirmed by PCR and transcriptional expression of the seaR gene in the transformant was analyzed by RT-PCR. In case of S. coelicolor A3(2), a phenotype microarray was used to analyze the phenotype of transformant compared with wild type by seaR expression. After that, in order to confirm the accuracy of the results obtained from the phenotype microarray, an antimicrobial susceptibility test was carried out. This test indicated that sensitivity of the transformant was higher than wild type in tetracycline case. These results indicated that some biosynthesis genes or resistance genes for tetracycline biosynthesis in transformant might be repressed by seaR expression. Therefore, subsequent experiments, analysis of transcriptional pattern of genes for tetracycline production or resistance, are needed to confirm whether biosynthesis genes or resistance genes for tetracycline are repressed or not.

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.