CPS(Cyber Physical System)에 대한 사이버 공격이 다양해지고 고도화됨에 따라 시그니쳐에 기반한 악성행위 탐지는 한계가 있어 기계학습 기반의 정상행위 학습을 통한 비정상행위 탐지 기법이 많이 연구되고 있다. 그러나 CPS 보안 연구는 보안상의 이유로 CPS 데이터가 주로 외부에 공개되지 않으며 또한 실제 비정상행위를 가동 중인 CPS에 실험하는 것이 불가능하여 개발 기법의 검증이 어려운 문제가 있다. 이를 해결하기 위해 2015년 SUTD(Singapore University of Technology and Design)의 iTrust 연구소에서 SWaT(Secure Water Treatment) 테스트베드를 구성하고 36가지의 공격을 수행한 데이터셋을 공개하였다. 이후 국 내외에서 SWaT 테스트베드 데이터를 사용하여 다양한 보안 기법을 검증한 연구결과가 발표되고 있으며 CPS 보안에 기여하고 있다. 따라서 본 논문에서는 SWaT 테스트베드 데이터 및 SWaT 테스트베드 데이터에 기반한 비정상행위 탐지 연구를 분석한 내용을 설명하고, 이를 통해 CPS 비정상행위 탐지 설계의 주요 요소를 분석하여 제시하고자 한다.
As cyber-attacks on Cyber-Physical System (CPS) become more diverse and sophisticated, it is important to quickly detect malicious behaviors occurring in CPS. Since CPS can collect sensor data in near real time throughout the process, there have been many attempts to detect anomaly behavior through normal behavior learning from the perspective of data-driven security. However, since the CPS datasets are big data and most of the data are normal data, it has always been a great challenge to analyze the data and implement the anomaly detection model. In this paper, we propose and evaluate the Clustered Deep One-Class Classification (CD-OCC) model that combines the clustering algorithm and deep learning (DL) model using only a normal dataset for anomaly detection. We use auto-encoder to reduce the dimensions of the dataset and the K-means clustering algorithm to classify the normal data into the optimal cluster size. The DL model trains to predict clusters of normal data, and we can obtain logit values as outputs. The derived logit values are datasets that can better represent normal data in terms of knowledge distillation and are used as inputs to the OCC model. As a result of the experiment, the F1 score of the proposed model shows 0.93 and 0.83 in the SWaT and HAI dataset, respectively, and shows a significant performance improvement over other recent detectors such as Com-AE and SVM-RBF.
For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.
머신러닝과 딥러닝의 기술이 보편화되면서 산업제어시스템의 이상(비정상) 탐지 연구에도 적용이 되기 시작하였다. 국내에서는 산업제어시스템의 이상 탐지를 위한 인공지능 연구를 활성화시키기 위하여 HAI 데이터셋을 개발하여 공개하였고, 산업제어시스템 보안위협 탐지 AI 경진대회를 시행하고 있다. 이상 탐지 연구들은 대개 기존의 딥러닝 학습 알고리즘을 변형하거나 다른 알고리즘과 함께 적용하는 앙상블 학습 모델의 방법을 통해 향상된 성능의 학습 모델을 만드는 연구가 대부분 이었다. 본 연구에서는 학습 모델과 데이터 전처리(pre-processing)의 개선을 통한 방법이 아니라, 비정상 데이터를 탐지하여 라벨링 한 결과를 보정하는 후처리(post-processing) 방법으로 이상 탐지의 성능을 개선시키는 연구를 진행하였고, 그 결과 기존 모델의 이상 탐지 성능 대비 약 10%이상의 향상된 결과를 확인하였다.
지표수와 지하수의 통합모델링은 지속가능한 수자원과 수질개선에 대한 점증하는 요구를 만족시키기 위해 점차 중요성을 더해가고 있다. 본 연구에서는 준분포형 유역유출모형인 SWAT과 완전분포형 지하수 모형인 MODFLOW의 통합모형을 무심천 유역에 작용하여 유역단위의 수문과정을 재생하였다. 모의결과 2001-2004년의 관측수문곡선과 모의유량수문곡선간의 적합이 잘 나타나는 한편 계산된 지하수위 분포와 관측지하수위와의 보정결과도 양호하게 나타났다. 통합모형은 서로 다른 기간의 강수평균이 하천유출, 침루, 함양, 지하수 유출의 동적과정에 미치는 영향을 평가하는데도 활용되었다. 나아가, 윌별강수와 각 수문성문간의 관계를 살펴보고 함양량의 시공간적 변동성을 분석하기 위한 종합적인 모의를 수행한 결과, 수문성분 상호간에 높은 상관성을 보이며 소유역경사, 토지이용, 토양종류 같은 유역특성의 비균질성이 함양량의 공간변화에 주요 원인인 것으로 확인됐다. 통합모형은 시공간적으로 변모하는 유역단위의 지표수와 지표하 수문과정을 전반적으로 잘 표현하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.