• Title/Summary/Keyword: SWMM(Storm Water Management Model)

Search Result 129, Processing Time 0.028 seconds

Analysis of Effect on Runoff and Water Quality of LID using Infiltration Facilities (우수 침투 시설을 활용한 친환경 도시 개발지구에서의 유출량 및 비점오염 저감 효과 분석)

  • Hwang, Jin-Yong;Yeon, Kyu-Seok;Kim, Ik-Jae;Kim, Ki-Sung;Choi, Joong-Dae;Jeon, Ji-Hong;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.105-114
    • /
    • 2009
  • With urbanization in many countries, many pervious areas are being converted into impervious areas. These land use changes cause many negative impacts on runoff and water quality in the areas. Especially runoff volume and peak runoff are increasing with urbanization. In addition to the increased runoff, more pollutant transports to the downstream areas. For these reasons, Low Impact Development (LID) are nowadays being introduced in urban planning. For environment-friendly and economical urban development, the LID Integrated Management Practices (IMPs) are applied in various urban development. However, exact effects on runoff and water quality of various LID IMPs are not assessed with proper LID evaluation technique. Thus, the SWMM (Storm Water Management Model) 5.0 model was slightly modified to simulate the effect of infiltration manhole on runoff and water quality. For comparison of runoff and TSS (Total Suspended Solids) from the study area (26.5 ha), three scenarios were made in this study. It was found that runoff volume, peak runoff, and TSS could be reduced with infiltration manholes and pervious pavements to some degree. Although, there are many limitations in the analysis of LID effects on runoff and TSS, similar trends shown in this study would be expected with site-specific LID IMPs. Thus, it is strongly recommended that various site-specific LID IMPs, such as infiltration facilities, should be applied as much as possible for environment-friendly urban planning.

A Simulation of the Runoff and the NPS Pollutants Discharge using SWMM Model (SWMM 모형을 이용한 도시 유역의 유출 및 NPS 오염물 배출 모의)

  • 신현석;윤용남
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.125-135
    • /
    • 1993
  • This study was conducted for two purposes. The first was the selection of the proper model for the urban runoff, and NPS(non-point source) loads and the second was the adjustment of the selected model through the calibration and the verification of the observed data on an urban drainage basin. The selected model for this study was the Storm Water Management Model(SWMM) developed and maintained by the US Environmental Protection Agency(EPA). In particular, the Runoff Block for the surface discharge and the Transport Block for the flow routing was used. The study basin is Youngdu basin, which is a typical developed urban drainage basin. The four rainfall events for the runoff and the two for the four NPS pollutants(SS, BOD, COD and TN) were used for the calibration and the estimation of the model parameters. This study performed the calibration with regard to the peak discharge, the time to peak discharge, the volume and the relative error for three items. It was shown that SWMM can successfully be used for the prediction of the runoff and the NPS pollutants discharge. The result of this study can be used as the basis for the analysis of the correlation between the runoff and the NPS pollutants discharges, and the analysis of the mass balance with the monthly and annual NPS loads in an urban drainage basin.

  • PDF

Estimation for Watershed pollutant loading with SWMM (SWMM 모형을 이용한 유역의 오염부하량 산정)

  • 전지홍;윤춘경
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.689-694
    • /
    • 1999
  • This study estimated average yearly watershed pollutant loading by using SWMM(Storm Water Management Model) which is one of the nonpoint source quality models. Two sites were measured discharge and water quality at dry period and wet period. The rainfall data is used from 1989 to 1998 . During a decade, the average year watershed pollutant loading, which is SS, BOD5 , TN, TP, were 2.39E+06kg, 0.92E +05kg, 2.53E+05kg, 2.66E+04kg respectively. During dry period, SS, BOD5 TN, TP loadings were 1.89E+05kg, 1.7E+05kg, 1.04E+05kg, 1.11E+04kg, and during wet period 1.89E+05kg, 1.17E+05kg, 1.04E+05kg, 1.11E+04kg respectively so wet period loading are more than dry day loadings.

  • PDF

Multipurposed Detention Pond Design for Improve Watershed Management

  • Park, Dae-Ryong;Jang, Suk-Hwan;Roesner Larry A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1880-1884
    • /
    • 2006
  • 도시 지역 개발후 하류지역에 유출량의 증가로 인해, 첨두유량의 완화는 도시 호우 관리에서 가장 중요한 고려 대상중의 하나이다. 일반적으로 설계기준의 호우에 대해서 개발지역의 첨두유량이 개발전의 첨두유량을 넘지 않도록 설계한다. 유수지는 오리피스와 위어를 이용하여 높은첨두율을 개발전의 첨두유량으로 조절하는 역할을 한다. 그러나 비싼 토지비용 때문에 한국에서 도시지역의 유수지 사용은 그렇게 일반적이지 않다. 따라서, 많은 도시 지역이 개발로 인한 유량의 증가를 겪고 있다. 이 연구에서는 새로 개발된 한국의 울산 화봉지역의 11 ha 소유역에서 첨두유량을 조절하기 위하여 어떻게 유수지와 오리피스와 위어를 설계하는지 조사하였다. 이 지역은 새로 개발된 한국의 도시지역을 보여주는 전형적인 지역으로 고려됐으며, 유수지는 2년 빈도, 10년 빈도 그리고 100년 빈도의 설계 강우에 대한 첨두유량을 조절할 수 있도록 설계하였다. 설계 유수지 모의를 위하여 Storm Water Management Model (SWMM)의 윈도우 최신 버전인 5.006a를 사용하였다. 이 연구에서는 얼마만큼의 유수지 면적이 다목적으로 사용될 수 있는지 제시하려 하였다.

  • PDF

A Study on Best Management Practice for Detention Pond Design in Small Urban Catchment (도시 소유역의 저류지 설계에 관한 최적 관리기술 연구)

  • Park, Woong-Seo;Jang, Suk-Hwan;Ryu, Keun-Joon;Shin, Cheol-Shik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.832-836
    • /
    • 2008
  • 우리나라는 하절기에 강우가 집중되고 있으며, 집중호우에 대한 도시 호우 피해사례가 최근 빈번히 발생하고 있다. 도시지역의 홍수유출량 저감 방안연구의 중요성에 대한 인식과 그 필요성이 절실한 상태이며, 그에 따라 본 연구에서는 대상 유역에 BMP를 적용한 저류지를 설치하여 첨두유량과 첨두시간의 저감 및 지체효과를 분석하고, 그 결과를 효율적으로 활용하고자 한다. 대상의 모형은 SWMM 5.0(Storm Water Management Model 5.0)을 이용하여 모델링 하였으며, 강우자료는 건설교통부 관할 의정부관측소의 1975년에서 2004년까지의 시강우자료를 바탕으로 24시간 Huff분포형을 산정하여 모형에 적용하였다. 대상 유역에 저류지 설치 전과 BMP가 적용된 저류지 설치 후, 그리고 BMP가 적용되지 않은 저류지 설치 후를 상호 비교하여 BMP저류지의 효과를 분석하였다.

  • PDF

An Estimation of NPS Pollutant Loads using the Correlation between Storm Water Runoff and Pollutant Discharge in a Small Urban Drainage Basin

  • Shin, Hyun-Suk;Yoon, Yong-Nam
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.99-114
    • /
    • 1994
  • Three purposes of this study are as follows : The first was the development of the extension method for the limited data observed in an urban drainage basin. The second was the analysis of the correlation between storm water runoff and NPS(non-point source) Pollutant discharge. The last was the calculation of the monthly and annual specific NPS loads using the established correlation. The selected model was the SWMM(Storm Water Management Model) developed by the US EPA(Environmental Protection Agency). As a result of this study, the best correlation between storm water runoff and NPS pollutants discharge was produced by the nonlinear correlation between runoff rate(mm/hr) and specific loads rate(kg/ha) for all pollutants studied : SS, COD, BOD, and TN. The best correlation through the analysis based on evently total mass was made by the linear correlation between the by the nonlinear correlation for CASE2. The NPS annual specific loads for the urban basin studed were 4,993 kg/ha/year for SS, 775 kg/ha/year for BOD, 3,094 kg/ha/year for COD, 257 kg/ha/year for TN, respectively. And the proportion of the NPS annual specific loads to the total annual specific loads were 41 % for SS, 13 % for BOD, 29 % for COD, and 21 % for TN.

  • PDF

The Development of Inflow/Infiltration Estimation System using Urban Runoff Model (도시유출 해석 모형을 이용한 불명수 산정 시스템 개발)

  • Lee, Eui Hoon;Lee, Jung Ho;Jo, Deok Jun;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1295-1299
    • /
    • 2004
  • 노후된 하수도 관망에서 발생하는 불명수(Inflow/Infiltration)량을 측정하기 위하여 수문학적 타당성을 비롯한 다양한 인자를 고려하여 많은 방법들이 개발되었다. 현행 실무에서는 물사용평가방법, 일 최대-최소 유량평가법, 일최대 유량평가법, 야간생활하수 평가법 등으로 산정하고 있으나 각 산정값들간의 차이가 매우 크면, 각 방법별 산정된 불명수의 평균값을 채택하는 현행 기준은 그 근거가 명확하지 않고 오차값이 신뢰할 수 있는 범위를 벗어난다. 본 연구에서 제안한 방법은 도시유출 해석 프로그램인 SWMM(Storm Water Management model)을 이용하여 모의유출량을 산정한 다음, 이를 관측유량과 비교하여 그 차이를 불명수량으로 산정하는 방법이다.

  • PDF

Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안)

  • Kim, Min ji;Kim, Ji Eun;Park, Kyung Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Due to climate change, increased heavy rainfalls result in flood damage every year. To investigate the storm-runoff reduction effects of Low Impact Development (LID), this study performed runoff analyses using the U.S. Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) for past and future representative storm events of the Yongdu Rainwater Pumping Station basin. As a result, the infiltration loss for representative future rainfalls increased by 3.17 %, and the surface runoff and peak runoff rate increased significantly by 32.50 %, and 128.77 %, respectively. To reduce the increased surface runoff and peak runoff rates, this study investigated the applicability of LID approaches, including a permeable pavement, green roof, and rain garden, by adjusting the LID parameters and the ratio of installation area. We identified the ranges of LID parameters that decreased peak runoff rate and surface runoff, and increased infiltration. In addition, when the application ratio of permeable pavement, green roof, and rain garden was 2:1:3, best performance was attained, leading to a reduction of peak runoff of 26.85 %, infiltration loss 12.01 %, surface runoff 15.11 %, and storage 509.47 %. Based on analyzing the effect of storm runoff reductions for various return periods, it was found that as the return period increased, the proportion of peak runoff and surface runoff increased and the proportion of infiltration loss and storage decreased.

Analysis of Water Cycle Effect according to Application of LID Techniques (LID 기법 적용에 따른 물순환 효과분석)

  • Lee, Jungmin;Lee, Yun;Choi, Jongsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • At present, the development in rainwater management approach is still insufficient due to the numerous adverse effects of urbanization. Storm water management is being developed to restore the natural state of water cycle undergoing several processes which were hindered such as infiltration and evapotranspiration. Low Impact Development (LID) was established in order to reduce the negative effects of urbanization to our environment. These developments can be used to respond to the effects of climate change such as heat island phenomenon. The effects of the development of new town in the district plan with application of LID facilities were studied and reported. Typically, LID facilities were applied in small scale development and were rarely used in large-scale development. Most of studies, however, did not assessment the effects of large-scale development projects with LID application to the natural water cycle. This study was conducted to simulate the urban hydrologic cycle simulation on Asan-Tangjeong in Korea. This study may be used in urban hydrologic cycle simulation and establishment of an urban water management plan in the future. Lastly, this study generated a model using the recently updated SWMM5 which determined the hydrologic cycle simulation after installation of LID facilities.

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.