• Title/Summary/Keyword: SWEEP

Search Result 715, Processing Time 0.041 seconds

Flutter Characteristics of Double-Swept Composite Wings (이중 후퇴각을 갖는 복합재 날개의 플러터 특성)

  • Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF

Optimization of Blade Sweep in an Axial Compressor Rotor (축류압축기 동익의 스윕각 최적화)

  • Jang, Choon-Man;Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.437-442
    • /
    • 2004
  • The optimization of a blade sweep for a transonic axial compressor rotor (NASA rotor 37) has been performed using a response surface method and a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. Two shape variables of the rotor blade, which are used to define a blade sweep, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. The result shows that the adiabatic efficiency is increased to about 1 percent compared to that of the reference shape of the rotor blade. Relatively high increasement of the adiabatic efficiency is obtained between 20 and 60 percent span. In the present study, backward swept blade is more effective to increase the adiabatic efficiency In the axial compressor rotor.

  • PDF

Optimization of Multi-Vehicle Delivery using Sweep Algorithm and Common Area Double Reassignment (Sweep해법 및 공동구역 2차 재할당에 의한 복수차량 배송 최적화 연구)

  • Park, Sungmee;Moon, Geeju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.133-140
    • /
    • 2014
  • An efficient heuristic for two-vehicle-one-depot problems is developed in this research. Vehicle moving speeds are various along hour based time intervals due to traffic jams of rush hours. Two different heuristics are examined. One is that the delivery area assignment is made using Sweep algorithm for two vehicles by splitting the whole area in half to equally divide all delivery points. The other is using common area by leaving unassigned area between the assigned for two vehicles. The common area is reassigned by two stages to balance the completion time of two vehicle's delivery. The heuristic with common area performed better than the other due to various vehicle moving speeds and traffic jams.

Extraction Method of Antioxidants in Soybean Oil (Sweep Co-Distillation 법에 의한 산화방지제의 추출법)

  • 황혜정
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 1999
  • This study was conducted to evaluate the extraction methods for the determination of antioxidants in soybean oil. Recovery rates of various antioxidants in soybean oil showed similar rates as 80.4~102.1% by solvent/solvent extraction method and 89.9~106.4% by sweep co-distillation method except 46.6~61.2% of PG at corresponding spiked concentractions. The maximun recovery rates of antioxidnts were obtained when extraction time and extraction temperature used in UNITREX were 20min and 21$0^{\circ}C$ respectively. In the recovery rates with the activation of florisil when 2% ofwater was added to florisil the highest recovery rates for TBHQ, BHA, BHT were obtained by sweep co-distillation met-hod. Therefore sweep co-distillation method showed less solvent simple operation and high recovery rate compared with solvent/solvent extraction method.

  • PDF

Nonlinearity Correction Method in FMCW Laser Range Finder (FMCW 레이저 거리 측정기의 비선형성 보정 방법)

  • Jung, Soo-Yong;Lee, Seong Ro;Jeong, Min A;Park, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.351-358
    • /
    • 2013
  • We propose a correction method of nonlinear frequency sweep in an FMCW(Frequency Modulated Continuous Wave) laser range finder. FMCW laser range finder requires linear frequency sweep for high resolution, and nonlinear frequency sweep makes the system performance degrade. In general, VCO(Voltage Controlled Oscillator) which is a component used for frequency modulation in FMCW method has nonlinear property. To correct the nonlinear frequency sweep, we utilize an auxiliary delay structure for generating trigger signal of ADC(Analog to Digital Converter). Because the trigger signal has same rate of change with the beat signal, the nonlinearity of the beat signal can be corrected. the experimental results show that the proposed method effectively eliminates the nonlinear frequency sweep problem and enhances the system performance.

Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD) (직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석)

  • Eum, Su-Hwan;Kim, Albert S.;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.236-246
    • /
    • 2011
  • In this study, we used prepared a cylindrical module consisting 100 hollow fibers of commercialized (hydrophobic) polyethylene membrane of $0.4{\mu}m$ pore size and systematically studied performance of direct contact membrane distillation (DCMD) and sweep gas membrane distillation (SGMD) in terms of variation of permeate flux and salt rejection with respect to temperature drop across the membrane, salt concentrations in feed, and flow rates of cooling water and sweep gas. SGMD was regarded as DCMD with a sweep gas layer between permeate-side membrane surface and cooling water. Sweep gas flow decreases the permeate flux from that of DCMD by providing an additional gas-layer resistance. We compared DCMD and SGMD performance by using mass balance with a fitting parameter (${\omega}$), indicating fraction of permeate flow rate.

Hydrogen separation of $V_{99.8}B_{0.2}$ Alloy Membrane in Water-gas shift Reaction (수성 가스 전이반응에서 $V_{99.8}B_{0.2}$ 합금 분리막의 수소분리)

  • Jeon, Sung-Il;Jung, Yeong-Min;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • The influence of co-existing gases on the hydrogen permeation without sweep gas was studied through a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane. Membranes have been investigated in the pressure range 1.5-8.0 bar under pure hydrogen, hydrogen-carbon dioxide and hydrogen-carbon monoxide gas mixture without sweep gas at $400^{\circ}C$. Preliminary hydrogen permeation experiments without sweep gas have been confirmed that hydrogen flux was $40.7mL/min/cm^2$ for a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane (thick : 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen flux was $21.4mL/min/cm^2$ for $V_{99.8}B_{0.2}$ alloy membrane using $H_2/CO_2$ as the feed gas. The hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of pressure when $H_2/CO_2$and $H_2/CO$mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD, SEM/EDX results after permeation test that the Pd-coated $V_{99.8}B_{0.2}$ alloy membrane had good stability and durability for various mixtures feeding condition.

A Sweep Surface based on Two-Parameter Motion (2-변수 모션기반의 스윕곡면)

  • Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • We present a new technique for constructing a sweep surface using two-parameter motion. Firstly, a new rational B-spline motion with two parameters is introduced, which is obtained by extending its orientation curve and scaling curve to surface counterparts. A sweep surface is then defined by a single vertex v under the two-parameter motion and allows to represent different u-directional iso-curves depending on parameter ${\upsilon}$. Efficient techniques for modeling and editing the surface are achieved by intuitively controlling the two-parameter motion. We demonstrate the effectiveness of our technique with experimental results on modeling and editing a 3D propeller model.

Design Parameter Analysis on the Performance and Noise of Axial Fan (축류형 홴 성능 및 소음에 영향을 미치는 설계변수 분석)

  • 김기황;이승배;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.275-281
    • /
    • 2001
  • While basic input parameters for the performance and noise of axial fan are flow rate, pressure rise, rotating speed, and fan diameter, the geometric parameters of blade are sweep angle, solidity, and camber angle. The sweep angle does not affect fan performance much, but on fan noise significantly. Solidity and camber angle are very critical design parameters acting on the fan performance directly. The solidity and camber angle are closely related, therefore they have to be carefully determined for the low-noise and high-performance fan. In This paper, different design points are selceted and also geometric parameters are deliberately changed for the comparison of fan noise. As a result, at the same performance, the input rotational speed affects radiated noise more significantly than others. When solidity and camber angle are increased more than those by iDesignFan/sup TM/ program, more noise is experienced. The blade sweep method and blade numbers at same solidity are observed to results in different levels of performance and noise.

  • PDF