• Title/Summary/Keyword: SWAT-K모형

Search Result 240, Processing Time 0.032 seconds

Occurrence and Behavior Analysis of Soil Erosion by Applying Coefficient and Exponent of MUSLE Runoff Factor Depending on Land Use (국내 토지이용별 MUSLE 유출인자의 계수 및 지수 적용을 통한 토양유실 발생 및 거동 분석)

  • Lee, Seoro;Lee, Gwanjae;Yang, Dongseok;Choi, Yujin;Lim, Kyoung Jae;Jang, Won Seok
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.98-106
    • /
    • 2019
  • The coefficient and exponent of the MUSLE(Modified Universal Soil Loss Equation) runoff factor in the SWAT(Soil and Water Assessment Tool) model are 11.8 and 0.56 respectively, which are equally applied to the estimation of soil erosion regardless of land use. they could derive overestimation or underestimation of soil erosion, which can cause problems in the selection of soil erosion-vulnerable area and evaluation of reduction management. However, there are no studies about the estimation of coefficients and exponent for the MUSLE runoff factor by land use and their applicability to the SWAT model. Thus, in order to predict soil erosion and sediment behavior accurately through SWAT model, it is necessary to estimate the coefficient and exponent of the MUSLE runoff factor by land use and evaluate its applicability. In this study, the coefficient and exponent of MUSLE runoff factor by land use were estimated for Gaa-cheon Watershed, and the differences in soil erosion and sediment from SWAT model were analyzed. The coefficient and exponent of runoff factor estimated by this study well reflected the characteristics of soil erosion in domestic highland watershed. Therefore, in order to apply the MUSLE which developed based on observed data of US agricultural basin to the domestic watershed, it is considered that a sufficient modification and supplementation process for the coefficient and exponent of the MUSLE runoff factor depending on land use is necessary. The results of this study can be used as a basic data for selecting soil erosion vulnerable area in the non-point source management areas and establishing and evaluating soil erosion reduction management.

Estimation of Interception in Cheonmi Watershed, Jeju Island (제주 천미천 유역의 차단량 추정)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.815-820
    • /
    • 2015
  • For the establishment of effective water resources management platform for Jeju-Island, the characteristics, including surface runoff, evapotranspiration, groundwater recharge and discharge are to be properly quantified. Among these hydrologic components, interception due to vegetation is very important factor but it is hard to be quantified. After Von Hoyningen-Huene (1981) found the relationship between LAI (Leaf Area Index) and interception storage, LAI has been used for key factor to estimate interception and transpiration. In this study the equation suggested by Kozak et al. (2007) is implemented in SWAT-K (Soil and Water Assessment Tool - Korea) model and is tested at the Cheonmicheon watershed in Jeju-Island. The evaporation due to interception was estimated as 85~104mm, 8~11% of whole evaporation. Therefore it is necessary to consider the evaporation due to interception as a controlling factor to water budget of this watershed.

A Study on Runoff and Pollutant Loading Prediction Using AR5 RCP4.5 Scenario in Nakdong River Watershed (AR5 RCP4.5 시나리오를 이용한 낙동강 유역에서의 유출 및 오염부하 전망)

  • Kim, Jung Min;Kim, Young Do;Kang, Busik;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.111-111
    • /
    • 2016
  • 최근 전 세계적으로 이상기후로 인해 극한 사상의 기후현상이 잦아지고 있으며 그로인한 피해가 확산되면서 관심이 높아지고 있다. 특히, 국내하천의 경우 높은 하상계수를 가지고 있는 만큼 수자원보전에 취약하고 수질의 문제 또한 대두되고 있다. 4대강 중 하나인 낙동강에는 8개의 보가 설치되었고 유역에 안동, 임하, 합천, 남강, 밀양댐 등 다기능댐이 있어 댐의 방류량이 낙동강의 유량에 큰 영향을 미치고 있다. 낙동강의 유량 및 수질을 관리하기 위해서는 이러한 현황들을 반영하여 유역관리를 포함한 통합적인 유량 및 수질관리가 필요하다. 본 연구에서는 IPCC에서 제공하는 AR5 RCP4.5 시나리오를 분위사상법(Quantile mapping)과 CF 다운스케일링 기법을 사용하여 유역에 맞게 상세화를 수행하였으며, 검 보정을 거친 SWAT 모형의 입력자료로 사용하여 낙동강 유역의 본류 및 지류의 미래 유출량 및 오염부하량을 예측하였다. 낙동강 유역에서의 미래기후변화 시나리오를 분석한 결과, 비홍수기에 32.3%, 홍수기에 31.1% 증가하는 것으로 나타났고, 2041 ~ 2070년도에 6%까지 증가하였다가 2071 ~ 2100년에 0.4% 감소하였다. 미래기후변화 시나리오를 SWAT 모형에 적용한 결과로는 주요 8개 지류에서 비슷한 패턴을 보였으며, 위천과 남강에서 각각 최대 45.5%, 16.6% 유출량이 증가하는 것으로 나타났다.

  • PDF

Hydrologic Component Analysis of the Seolma-Cheon Watershed by Using SWAT-K Model (SWAT-K 모형을 이용한 설마천 유역의 수문성분 해석)

  • Kim, Nam-Won;Lee, Ji-Eun;Chung, Il-Moon;Kim, Dong-Pil
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1363-1372
    • /
    • 2008
  • In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma-Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Construction Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.

Simulation of Groundwater Variation Characteristics of Hancheon Watershed in Jeju Island using Integrated Hydrologic Modeling (통합수문모형을 이용한 제주 한천유역의 지하수 변동 특성 모의)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.515-522
    • /
    • 2013
  • To investigate groundwater variation characteristics in the Hancheon watershed, Jeju Island, an integrated hydrologic component analysis was carried out. For this purpose, SWAT-MODFLOW which is an integrated surface-groundwater model was applied to the watershed for continuous watershed hydrologic analysis as well as groundwater modeling. First, ephemeral stream characteristics of Hancheon watershed can be clearly simulated which is unlikely to be shown by a general watershed hydrologic model. Second, the temporally varied groundwater recharge can be properly obtained from SWAT and then spatially distributed groundwater recharge can be made by MODFLOW. Finally, the groundwater level variation was simulated with distributed groundwater pumping data. Since accurate recharge as well as abstraction can be reflected into the groundwater modeling, more realistic hydrologic component analysis and groundwater modeling could be possible.

Prediction of Water Quality Effect of Watershed Runoff Change in Doam Reservoir (유역유출 변화에 따른 도암댐 저수지 수질 영향 예측)

  • Noh, Hee Jin;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.975-985
    • /
    • 2013
  • In this research, the integrated modeling system by coupling of a watershed model, a reservoir model, and a river model has been constructed in Doam reservoir watershed. Because of domestic climate characteristics, it is inevitable to construct the dam for control of flood, water use, and power production due to the heavy rain in the summer. Especially, when the dam is constructed on the stream for these kinds of purpose, it is necessary to consider this region as one watershed and also to make the integrated system for simulation and management. In this study, SWAT model was constructed for watershed modeling and EFDC-WASP model was constructed for simulating the hydrodynamic and water quality of the reservoir and the downstream in Doam dam watershed. Also, the water quality improvement equipment for demonstration was applied in the upstream part of Doam reservoir, which shows the applicability of the developed integrated modeling system.

Development of Downstream Turbid Water Management System Using SWAT and KoRiv1 Dynamic Water Quality Simulation Model (SWAT 및 KoRiv1 모형을 활용한 하류하천 탁도관리 시스템구축)

  • Noh, Joon-Woo;Kim, Jeong-Kon;Lee, Sang-Uk
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1035-1043
    • /
    • 2009
  • High turbid water in the River has been one of the major concerns to the downstream residence. Especially in the Nakdong River basin severe turbid water problem occurred in year 2002 and 2003 due to the typhoon Rusa and Maemi consecutively. The main objective of this study is to develop turbid water management system in reservoir downstream of the Nakdong River combining physically based semi-distributed hydrologic simulation model SWAT with 1-dimensional dynamic water quality simulation model. SWAT model covers the area from the upstream of the Imha and Andong reservoir to the Gumi gage station for the purpose of estimating flow rates and suspended sediment of the tributaries. From year 1999 to 2007 runoff simulation for 8 years $R_{eff}$ and $R^2$ ranges $0.46{\sim}0.9$, $0.54{\sim}0.99$ respectively. Through the linkage of models, outputs of SWAT model such as suspended sediment and flow rates of the tributaries can be incorporated into the 1-dimensional dynamic water quality simulation model, KoRiv1 to support joint reservoir operation considering the turbidity released from Imha and Andong reservoir. The applicability of model simulation has been tested for year 2006 and compared with measured data.

Evaluation of SWAT Model for Nutrient Load from Small Watershed in Juam Lake (주암호 소유역의 영양물질 부하 추정을 위한 SWAT 모형의 적용성 평가)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Han, Kuk-Heon;Choi, Woo-Young;Lee, Jun-Bae;Choi, Hun-Geun
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1027-1033
    • /
    • 2009
  • For the assesment of pollutant loads, a monitoring has been conducted to identify hydrologic conditions and water quality of the Oenam watershed in Juam Lake, and the SWAT model integrated with GIS was applied to the watershed and evaluated for its applicability through calibration and verification using observed data. For the model application, digital maps were constructed for watershed boundary, land-use, soil series, digital elevation, and topographic input data of the Oenam watershed using Arcview. The observed runoff was 832.8 mm while the simulated runoff was 842.8 mm in 2003. The model results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model. In terms of nutrient load, the simulation results of T-N, T-P showed a similar trend to observed values. The observed T-N load was 10.8 kg/ha and the simulated T-N load was 7.6 kg/ha while the observed T-P load was 0.21 kg/ha and the simulated T-P load was 0.18 kg/ha. In general, SWAT model predicted observed runoff and loads of T-N and T-P after calibration with observed data in acceptable range. Overall, SWAT model was satisfactory in estimation of nutrient pollutant loads of the rural watershed.

Assessment of evapotranspiration for Chungju dam watershed using SWAT-K simulation (SWAT-K 모의치를 이용한 충주댐 유역의 증발산량 평가)

  • Kim, Nam-Won;Lee, Jeong-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.385-385
    • /
    • 2011
  • 유역 스케일의 실제 증발산량을 산정하는 대표적인 방법으로 관측 강우량과 유출량의 관계로부터 증발산량을 간접적으로 추정하는 물수지(water balance)법, 증발력과 토양수분량의 변화량 (soil moisture accounting)을 고려한 유역 수문모델링을 이용하는 방법, 잠재 증발산량과 실제 증발산량간 보완관계식(complementary relationship)을 이용하는 방법 등이 있다. 물수지법은 관측치를 기반으로 한다는 점에서 신뢰도가 높다고 할 수 있으나, 기본적으로 유역 저류량의 변화를 무시하기 때문에 연 단위와 같이 긴 시간 스케일에 적용 가능하고 작은 시간 스케일에는 적용성이 떨어진다. 유역 수문모델링을 이용하는 방법은 기상, 토양 및 식물 조건을 모두 고려하는 방법으로 유역의 불균질성을 반영할 수 있고 일 단위 등의 비교적 작은 시간 스케일에 대해서도 증발산량을 산정할 수 있는 장점이 있으나, 수많은 입력자료가 필요하며 간접적인 추정 방식이기 때문에 모형의 정확한 검증과 상당한 숙련도가 뒷받침되어야 한다. 잠재 증발산량과 실제 증발산량간 보완관계식을 이용하는 방법은 토양이나 식물 등의 지표면 조건에 대한 정보를 필요로 하지 않으며 단지 기상자료만을 이용하는 방법으로 적용하기 쉽다는 장점이 있으나 잠재 및 실제 증발산량간의 보완피드벡 매카니즘이 존재한다는 가정이 수반되어 있어 적용시 이를 입증해야 하는 어려움이 있다. 이 처럼 각기 장단점을 가진 여러 방법으로 증발산량을 산정하고 있지만, 각 방법 간의 연결고리를 맺는 연구는 심도 있게 수행되지 못하고 있다. 따라서 본 연구에서는 상기 언급한 증발산량 산정 방법 중 보완관계식을 이용하는 방법과 유역수문모형에 의한 방법 간의 연관성을 평가하고자 하였으며, 이를 위해 충주댐 상류유역에 대해서 SWAT-K에 의한 증발산량 모의치가 보완관계식을 따르는 지에 대해 고찰하였다. 모의기간동안 계산된 잠재 및 실제 증발산량을 습윤지수(humidity index)에 따라 함께 도시해본 결과, 연 단위의 경우에는 건조할수록 잠재 증발산량은 점차 커지고 실제 증발산량은 작아지는 것으로 나타나 보완관계가 성립하였고, 월 단위 경우에는 강우에 비해서 비교적 증발산량이 큰 5, 6월에 가장 명확한 관계가 보여 늦은 봄과 초여름에 보완적 관계가 뚜렷하게 발생하는 반면에 동절기에는 보완관계가 성립하지 않는 것으로 나타나는 등 분석 단위기간별로 보완관계의 성립여부를 판별할 수 있었다.

  • PDF

Empirical Formula of Delay Time for Groundwater Recharge in the Representative Watersheds, Jeju Island (제주 대표유역에 대한 함양지체시간의 경험식)

  • Kim, Nam Won;Na, Hanna;Chung, Il-Moon;Kim, Youn Jung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.743-752
    • /
    • 2014
  • Delay time for groundwater recharge means the travel time from the bottom of soil layer to groundwater through vadose zone after infiltration from rainfall. As it is difficult to measure delay time, we suggested an empirical formula which is derived by using linear regression between altitude and delay time. For the regression analysis, 4 major gauging watersheds were chosen (Hancheon, Kangjeongcheon, Oedocheon, Cheonmicheon) with 18 measured groundwater level stations. To verify this empirical formula, derived equation from linear reservoir theory was applied to compute delay time and to compare estimated amounts of groundwater recharge using both methods. The result showed good agreement. Furthermore, if derived empirical formula would be linked with SWAT model, the spatial time delay effect in the watershed could be reflected properly.