• Title/Summary/Keyword: SWAT basin model

Search Result 116, Processing Time 0.022 seconds

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

Application of SWAT model on Soyang Dam Basin (소양강댐 유역에 대한 SWAT 모형의 적용)

  • Kim, Nam-Won;Lee, Jeong-Eun;Won, Yoo-Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.628-632
    • /
    • 2005
  • 본 연구에서는 장기유출모형인 SWAT 모형의 대유역에 대한 적용성을 평가하고자 하였다. 이를 위해 국내 대표적 대유역인 소양강댐 유역을 선정하여 연구를 수행하였다. SWAT 모형의 기본입력자료인 수문기상 자료와 GIS 자료(DEM, 토지이용도/토지피복도, 토양도)의 국내 구축현황을 고려해 볼 때, 대유역에서의 적용성이 검증된다면 나아가 4대강 유역에 대한 SWAT 모형의 적용 또한 가능해지리라 판단되며, 국가 수자원 계획의 중요한 기초자료를 제공할 수 있을 것이다. 또한, SWAT 모형은 분포형 모형의 장점 중의 하나인 사용자가 원하는 지점에서의 수문성분을 모의할 수 있다. 이는 미계측 유역에 대한 수문성분을 평가할 수 있다는 것으로, 유역내 수위관측지점을 기준으로 관측유량과 모의유량을 비교$\cdot$검토하여 그 적절성을 평가하였다.

  • PDF

Application of SWAT Model on Rivers in Jeju Island (제주도 하천에 대한 SWAT 모형의 적응)

  • Jung, Woo-Yul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1039-1052
    • /
    • 2008
  • The SWAT model developed by the USDA-Agricultural Research service for the prediction of rainfall run-off, sediment, and chemical yields in a basin was applied to Jeju Island watershed to estimate the amount of runoff. The research outcomes revealed that the estimated amount of runoff for the long term on 2 water-sheds showed fairly good performance by the long-term daily runoff simulation. The watershed of Chunmi river located the eastern region in Jeju Island, after calibrations of direct runoff data of 2 surveys, showed the similar values to the existing watershed average runoff rate as 22% of average direct runoff rate for the applied period. The watershed of Oaedo river located the northern region showed $R^2$ of 0.93, RMSE of 14.92 and ME of 0.70 as the result of calibrations by runoff data in the occurrence of 7 rainfalls.

The Analysis of Suspended Sediment Load of Donghyang and Cheoncheon Basin using GIS-based SWAT Model (GIS 기반 SWAT 모델을 이용한 동향·천천유역의 부유사량 분석)

  • Lee, Geun-Sang;Kim, Yu-Ri;Ye, Lyeong;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.82-98
    • /
    • 2009
  • This study applied SWAT model to analyze suspended sediment load that is influence on the high density turbid water in Donghyang and Cheoncheon basin, which are located in the upstream of Yongdam Dam. GIS data such as DEM, land cover map and soil map, and meteorological data were used as the input data of SWAT model. And the rating curve equation and Q-SS equation of Donghyang and Cheoncheon gauge station were applied as the measured values of them. As the result of flowout, the coefficient of determination ($R^2$) and the Nash-Sutcliffe coefficient of efficiency (EI) of model calibration showed high as 0.87 and 0.87 at Donghyang gauge station, and the $R^2$ and EI of model validation were high as 0.95 at Cheoncheon gauge station. Also, as the result of suspended sediment load, the $R^2$ and EI of model calibration were high as 0.77 and 0.76 at Donghyang gauge station, and the $R^2$ and EI of model validation marked high as 0.867 and 0.80 at Cheoncheon gauge station. It is considered that the suspended sediment load of 2003 showed the highest due to rainfall amounts and rainfall intensity in using SWAT model. The results of suspended sediment modeled in this study can be applied to the decision-making support data for the evaluation of soil erosion possibility and turbid water potential in the management of reservoir.

  • PDF

The Evaluation of Sediment Yield of Dam-basin considering Future Climate Change in GIS Environment (미래 기후변화를 고려한 GIS 기반의 댐유역 유사량 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong;Cho, Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.383-385
    • /
    • 2010
  • This study analyzed the change of flowout and suspend solid in Andong and Imha basin according to the climate change to develop evaluation index about turbid water occurrence possibility and to support the countermeasures for turbid water management using GIS-based Soil and Water Assessment Tools (SWAT). MIROC3.2 hires model values of A1B climate change scenario that were supplied by Intergovernmental Panel on Climate Change (IPCC) were applied to future climage change data. Precipitation and temperature were corrected by applying the output value of 20th Century Climate Coupled Model (20C3M) based on past climate data during 1977 and 2006 and downscaled with Change Factor (CF) method. And future climate change scenarios were classified as three periods (2020s, 2050s, 2080s) and the change of flowout and suspended solid according to the climate change were estimated by coupling modeled value with SWAT model.

  • PDF

Characteristics of Runoff on Southern Area of Jeju Island, Korea (제주도 남부지역의 유출 특성)

  • Kang, Myung-Su;Yang, Sung-Kee;Jung, Woo-Yeol;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.591-597
    • /
    • 2013
  • For Kangjeong stream and Akgeun stream in the central part of the southern Jeju Island, on-site discharge estimation was carried out for approximately 10 months (July 2011-April 2012) twice a month on a regular basis by using ADCP (acoustic doppler current profiler) and long term rate of discharge was calculated by using SWAT (soil and water assessment tool) model. The discharge was $0.28-1.30m^3/sec$ for Kangjeong stream and $0.10-1.54m^3/sec$ for Akgeun stream. It showed the maximum in the summer and the minimum in the winter. As a result of parameter sensitivity analysis of SWAT model, CN (NRCS runoff curve number for moisture condition II), SOL_AWC (available water capacity of the soil layer), and ESCO (soil evaporation compensation factor) showed sensitive responses. By using the result, the model was corrected and the rate of discharge was calculated. As a result, the annual discharge rate was 27.12-31.86(%) at the Akgeun basin and 23.55-28.43(%) at the Kangjeong basin.

Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models (TANK 모형과 SWAT 모형을 이용한 한강유역의 자연유출량 산정 비교)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.301-316
    • /
    • 2012
  • Two models, TANK and SWAT (Soil and Water Assessment Tool) were compared for simulating natural flows in the Paldang Dam upstream areas of the Han River basin in order to understand the limitations of TANK and to review the applicability and capability of SWAT. For comparison, simulation results from the previous research work were used. In the results for the calibrated watersheds (Chungju Dam and Soyanggang Dam), two models provided promising results for forecasting of daily flows with the Nash-Sutcliffe model efficiency of around 0.8. TANK simulated observations during some peak flood seasons better than SWAT, while it showed poor results during dry seasons, especially its simulations did not fall down under a certain value. It can be explained that TANK was calibrated for relatively larger flows than smaller ones. SWAT results showed a relatively good agreement with observed flows except some flood flows, and simulated inflows at the Paldang Dam considering discharges from upper dams coincided with observations with the model efficiency of around 0.9. This accounts for SWAT applicability with higher accuracy in predicting natural flows without dam operation or artificial water uses, and in assessing flow variations before and after dam development. Also, two model results were compared for other watersheds such as Pyeongchang-A, Dalcheon-B, Seomgang-B, Inbuk-A, Hangang-D, and Hongcheon-A to which calibrated TANK parameters were applied. The results were similar to the case of calibrated watersheds, that TANK simulated poor smaller flows except some flood flows and had same problem of keeping on over a certain value in dry seasons. This indicates that TANK application may have fatal uncertainties in estimating low flows used as an important index in water resources planning and management. Therefore, in order to reflect actually complex and complicated physical characteristics of Korean watersheds, and to manage efficiently water resources according to the land use and water use changes with urbanization or climate change in the future, it is necessary to utilize a physically based watershed model like SWAT rather than an existing conceptual lumped model like TANK.

Application of SWAT for the Estimation of Soil Loss in the Daecheong Dam Basin (대청댐 유역 토양 침식량 산정을 위한 SWAT 모델의 적용)

  • Ye, Lyeong;Yoon, Sung-Wan;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.149-162
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) developed by the USDA-Agricultural Research Service for the prediction of land management impact on water, sediment, and agricultural chemical yields in a large-scale basin was applied to Daecheong Reservoir basin to estimate the amount of soil losses from different land uses. The research outcomes provide important indications for reservoir managers and policy makers to search alternative watershed management practices for the mitigation of reservoir turbidity flow problems. After calibrations of key model parameters, SWAT showed fairly good performance by adequately simulating observed annual runoff components and replicating the monthly flow regimes in the basin. The specific soil losses from agricultural farm field, forest, urban area, and paddy field were 33.1, $2.3{\sim}5.4$ depending on the tree types, 1.0, and 0.1 tons/ha/yr, respectively in 2004. It was noticed that about 55.3% of the total annual soil loss is caused by agricultural activities although agricultural land occupies only 10% in the basin. Although the soil erosion assessment approach adopted in this study has some extent of uncertainties due to the lack of detailed information on crop types and management activities, the results at least imply that soil erosion control practices for the vulnerable agricultural farm lands can be one of the most effective alternatives to reduce the impact of turbidity flow in the river basin system.

Flow Calibration and Validation of Daechung Lake Watershed, Korea Using SWAT-CUP (SWAT-CUP을 이용한 대청호 유역 장기 유출 유량 보정 및 검증)

  • Lee, Eun-Hyoung;Seo, Dong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.711-720
    • /
    • 2011
  • SWAT (Soil and Water Assessment Tool) model was calibrated for the flow rate of the Deachung lake with a large area of 3108.29 $km^2$. Application of SWAT model requires significant number of input data and is prone to result in uncertainties due to errors in input data, model structure and model parameters. The SUFI-2 (Sequential Uncertainty Fitting Ver. 2) program and GLUE (Generalized Likelihood Uncertainty Estimation) program in SWAT-CUP (SWAT-Calibration and Uncertainty Program) are used to select the best parameters for SWAT model. Optimal combination of parameter values was determined through 2,000 iterative SWAT model runs. The Nash-Sutcliffe values and $R^2$ values were 0.87 and 0.89 respectively indicating both methods show good agreements with observed data successfully. RMSE and MSE values also showed similar results for both programs. It seems the SWAT-CUP has a great practical appeal for parameter optimization especially for large basin area and it also can be used for less experienced SWAT model users.