Soil and Water Assessment Tool (SWAT) model has been widely used in estimation of flow and water quality at various watersheds worldwide, and it has an auto-calibration tool that could calibrate the flow and water quality data automatically from thousands of simulations. However, only continuous measured day flow/water quality data could be used in the current SWAT auto-calibration tool. Therefore, 8-day interval flow and water quality data measured nationwide by Korean Ministry of Environment (MOE) could not be used in SWAT auto-calibration even though long-term flow and water quality data in the Korean Total Maximum Daily Load (TMDL) watersheds available. In this study, current SWAT auto-calibration was modified to calibrate flow and water quality using 8-day interval flow and water quality data. As a result of this study, the Nash and Sutcliffe Efficiency (NSE) values for flow estimation using auto-calibration are 0.77 (calibration period) and 0.68 (validation period), and NSE value for water quality (T-P load) estimation (using the 8-day interval water quality data) is 0.80. The enhanced SWAT auto-calibration could be used in the estimation of continuous flow and water quality data at the outlet of TMDL watersheds and ungaged point of watersheds. In the next study, the enhanced SWAT auto-calibration will be integrated with Web based Load Duration Curve (LDC) system, and it could be suggested as methods of appraisal of TMDL in South Korea.
The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.
유역 단위 수문 및 수질 평가 모형인 SWAT 모형을 이용한 유역 내 정확한 수문과 비점오염원 거동을 평가하기 위해서는 유역 적용에 앞서 모형의 정확성 평가가 우선시 되어야 한다. SWAT 모형의 수문 보정및 검정 시, Nash-Sutcliffe의 효율계수(EI)가 널리 사용되고 있다. 그러나 이러한 EI 값은 비교되어지는 값들의 범위 중 큰 값 즉, 수문 분석에 있어 고유량에 대해 민감하게 영향을 받는 것으로 알려져 있다. 그리하여 본 연구에서는 보다 정확한 수문 분석을 위해 K-means 군집화 알고리즘을 이용한 웹기반의 EI 평가시스템을 개발하였고, 이를 SWAT 모형의 수문 평가에 적용하였다. 본 연구의 결과 전체 유량의 EI 값은 높았지만, 수문성분에 따른 EI 값은 높지 않았다. SWAT 모형의 수문 보정 및 검정에 널리 활용되고 있는 SWAT auto-calibration tool은 전체 유량에 대해서는 높은 EI 값을 산정하는 것으로 보이지만, 직접유출과 기저유출 각각에 대한 유량 그룹 I 과 II 에 대해서는 대부분 음수(-)의 EI 값을 보였다. 그리하여 본 연구 결과를 통해 SWAT 모형의 수문성분 평가에 있어 보다 정확한 평가를 위해서는 직접유출과 기저유출에 대한 각각의 유량 그룹에 대해 양수(+)의 EI 값이 산정되도록 모형 보정 및 검정의 수행 필요할 것으로 사료된다.
The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.
본 연구는 다목적 입자군집최적화(Particle Swarm Optimization, PSO) 알고리즘을 SWAT(Soil and Water Assessment Tool) 모형에 적용하여 자동보정 알고리즘의 적용 가능성을 평가하고자 한다. PSO 알고리즘은 Python을 활용해 다목적 함수를 고려할 수 있도록 새롭게 개발되었다. SWAT 모형의 유출 해석은 안성천의 공도 수위 관측소 상류유역($366.5km^2$)을 대상으로 하였으며, 공도 지점의 2000년부터 2017년까지의 일 유량 자료를 이용하여 검보정하였다. 모형을 위한 기상자료는 공도유역 주변 3개 기상관측소(수원, 천안, 이천)의 일별 강수량, 최고 및 최저기온, 평균 풍속, 상대습도 및 일사량을 구축하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), Nash-Sutcliffe 모형효율계수(NSE) 및 IOA(index of agreement) 등을 활용하여, 기존 연구 결과와 PSO 알고리즘을 활용한 결과를 비교 분석하고자 한다. 본 연구에서 개발한 다목적 PSO 알고리즘을 활용한 SWAT모형의 유출 해석은 보다 높은 정확도를 얻을 수 있을 것으로 예상되며, Python으로 개발되어 SWAT모형 이외에도 널리 적용될 수 있을 것으로 판단된다.
수문곡선의 감수부는 기저유출의 특성을 반영하기 때문에 강우유출 모형과 기저유출분리법을 이용한 기저유출 산정과정에서 감수부의 특성을 고려해야한다. 따라서 본 연구는 감수특성을 고려하여 Soil and Water Assessment Tool(SWAT)의 보정에서 유량예측의 정확성을 높이고, 보정된 SWAT으로부터 예측된 유량으로부터 기저유출을 분리하고자 하였다. 이를 위하여 RECESS으로부터 산정된 alpha factor와 11개의 다른 매개변수를 자동보정모듈에 적용한 시나리오 (S1)와 SWAT의 매개변수인 alpha factor를 포함한 12개의 매개변수를 자동보정모듈에 적용한 시나리오 (S2)에 대해 SWAT을 이용해 유량 모의를 하였다. 또한, 두 시나리오에 대해 SWAT으로 예측된 유량을 Web-based Hydrograph Analysis Tool (WHAT)을 적용하여 기저유출을 산정하였다. 보정 결과는 유량에 대한 두 시나리오의 Nash-Sutcliffe Efficiency (NSE) 값들 사이에 큰 차이는 보이지 않았으나 기저유출의 경우 S1에 대한 NSE는 0.777이고, S2의 NSE 결과는 0.844로 다소 큰 차이를 보였다. 연평균 유량의 분포의 정량적 비교를 위한 관측유량과 상대오차를 산정하였으며 S1에 대하여 20.78%, S2에 대하여 6.59%의 상대오차를 보였다. 본 연구는 모형을 이용하여 예측된 유량으로부터 기저유출을 산정하는데 있어 감수부 특성의 중요성을 보여주었다.
The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.
Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.
본 연구는 다목적함수를 고려한 입자군집최적화(Particle Swarm Optimization, PSO) 알고리즘을 Python으로 개발하고, Soil and Water Assessment Tool (SWAT) 모형에 적용하여 자동보정 알고리즘의 적용 가능성을 평가하였다. SWAT 모형의 유출 해석은 안성천의 공도 수위 관측소 상류유역($364.8km^2$)을 대상으로 하였으며, 공도 지점의 2000년부터 2015년까지의 일 유량 자료를 이용하였다. PSO 자동보정은 결정계수(coefficient of determination, $R^2$), 평균제곱근오차(RMSE), NSE 모형효율계수(Nash-Sutcliffe Efficiency, $NSE_Q$), 특히 중간유출과 기저유출의 보정을 위해 $NSE_{INQ}$ (Inverse Q)를 활용하여 SWAT을 보정하였다. PSO을 통한 SWAT 모형의 자동보정과 수동보정의 유출해석 결과, 각각 $R^2$는 0.64, 0.55, RMSE는 0.59, 0.58, $NSE_Q$는 0.78, 0.75, $NSE_{INQ}$는 0.45, 0.09의 상관성 분석결과를 보였다. PSO 자동보정 알고리즘은 수동보정에 비하여 높은 향상을 보였는데 특히 유출의 감수곡선을 개선시켰으며 적절한 매개변수 추가(RCHRG_DP)와 매개변수 범위의 설정으로 수동보정의 한계를 보완하였다.
SWAT (Soil and Water Assessment Tool) 모형은 물리적 기반의 준분포형 강우-유출 모형으로서, 대규모의 복잡한 유역에서 장기간에 걸친 다양한 종류의 토양과 토지이용 및 토지관리 상태에 따른 유출과 유사 및 오염물질의 거동에 대한 토지관리 방법의 영향을 예측이 가능하여, 수자원 관리 계획 및 유역관리를 위한 의사결정 지원 등 그 적용 범위가 매우 광범위하다. 이러한 모형의 적용성 검증을 위해서는 매개변수 민감도 분석 및 검 보정, 예측 불확실성 분석을 필요로 한다. 최근 수문 모델의 불확실성을 분석하기 위한 다양한 기법들이 개발 되었는데, 본 연구는 충주댐 유역(6,581.1 m)을 대상으로 유역출구점의 실측 일 유출량 자료(1998~2003)를 바탕으로 SWAT 모형의 유출관련 매개변수(총 18개)에 대한 불확실성 분석을 실시하였다. 이때 사용된 분석 기법으로는 SUFI2 (Sequential Uncertainty FItting algorithm 2), GLUE (Generalized Likelihood Uncertainty Estimation), ParaSol (Parameter Solution)등을 적용 하였다. 이러한 기법은 모두 SWAT-CUP (SWAT-Calibration Uncertainty Program, Abbaspour, 2007) 모형에 탑재되어있으며, 모형의 결과로써 검 보정, 매개변수의 민감도 분석, 각종 목적 함수 및 불확실성의 범위 등이 자동으로 산출 되므로 모형의 사용자가 불확실성 평가 기법의 분석 및 비교를 손쉽게 할 수 있다. 그 결과 대표적인 목적 함수인 결정 계수( $^2$)와 NSE (Nash-Sutcliffe Model Efficiency)는 모두 0.65에서 0.92사이의 값을 나타내어 대체적으로 모의가 잘 이루어졌음을 알 수 있었다. 그러나 불확실성의 범위를 나타내는 지표인 p-factor 및 r-factor에서는 평가 기법 별로 그 차이가 확연하게 드러났다. 여기서 p-factor는 불확실성 범위에 실측치가 포함되는 비율이며, r-factor는 불확실성의 상대적인 범위로 각각 1과 0에 가까울수록 모의 기법의 성능이 우수함을 의미한다. 세 가지 알고리듬 중에서 SUFI2의 p-factor가 약 0.51로 가장 높게 나타났으며, ParaSol의 r-factor가 0.00으로 가장 작게 나타났다. 여기서 p-factor는 불확실성 범위에 실측치가 포함되는 비율이며, r-factor는 불확실성의 상대적인 범위를 의미한다. 본 연구의 결과는 SWAT 모형을 이용한 수문모델링에서 수문분석에 따른 예측결과의 불확실성을 정량적으로 평가함으로서, 모형의 적용성 평가 및 모의결과의 신뢰성 확보에 근거자료로 활용이 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.