• Title/Summary/Keyword: SVMs

Search Result 128, Processing Time 0.029 seconds

A Prior Model of Structural SVMs for Domain Adaptation

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.712-719
    • /
    • 2011
  • In this paper, we study the problem of domain adaptation for structural support vector machines (SVMs). We consider a number of domain adaptation approaches for structural SVMs and evaluate them on named entity recognition, part-of-speech tagging, and sentiment classification problems. Finally, we show that a prior model for structural SVMs outperforms other domain adaptation approaches in most cases. Moreover, the training time for this prior model is reduced compared to other domain adaptation methods with improvements in performance.

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

A Studies on the Bio-monitoring using Shell Valve Movements (SVMs) of Pacific Oyster Crassostrea gigas for Toxic Dinoflagellates, Genus Alexandrium (참굴, Crassostrea gigas의 패각운동을 이용한 유독와편모조 Alexandrium 속의 모니터링 연구)

  • Kim, Yoon Jeong;Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.778-784
    • /
    • 2017
  • We investigated the possibility of a bio-monitoring system for predicting toxic dinoflagellates (Genus Alexandrium) by the measuring shell valve movements(SVMs) of Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia) using the Hall element sensor. We then described the SVMs of Pacific oyster exposed to the toxic algae under laboratory conditions. Pacific oyster used for experiment were fed Isochrysis galbana until they stabilized and kept under hunger conditions for three days to prevent the influence of food before the experiment. Pacific oyster were exposed to the toxic dinoflagellate, A. fundyense, and the potentially toxic dinoflagellate, A. affine. When Pacific oyster were exposed to A. fundyense, SVMs increased over 10 times/hr at low cell densities of 20 cells/mL. SVMs increased again at $14.1{\pm}5.7times/hr$ at 500 cells/mL, and $27.9{\pm}11.1times/hr$ at the high cell density of 5,000 cells/mL. However, in the presence of A. affine, SVMs increased at $6.7{\pm}3.9times/hr$ until 300 cells/mL, while they increased greatly to $15.3{\pm}10.8times/hr$ at 1,000 cells/mL. The SVMs of Pacific oyster indicated differences depending on species for toxic dinoflagellates. Therefore, the SVMs of Pacific oyster could be useful for A. fundyense, but would bedifficult to apply for A. affine.

Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines (SVMs 을 이용한 유도전동기 지능 결항 진단)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

The Performance Improvement of Face Recognition Using Multi-Class SVMs (다중 클래스 SVMs를 이용한 얼굴 인식의 성능 개선)

  • 박성욱;박종욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • The classification time required by conventional multi-class SVMs(Support Vector Machines) greatly increases as the number of pattern classes increases. This is due to the fact that the needed set of binary class SVMs gets quite large. In this paper, we propose a method to reduce the number of classes by using nearest neighbor rule (NNR) in the principle component analysis and linear discriminant analysis (PCA+LDA) feature subspace. The proposed method reduces the number of face classes by selecting a few classes closest to the test data projected in the PCA+LDA feature subspace. Results of experiment show that our proposed method has a lower error rate than nearest neighbor classification (NNC) method. Though our error rate is comparable to the conventional multi-class SVMs, the classification process of our method is much faster.

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Chang-Ki;Jang, Myun-Gil
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.655-667
    • /
    • 2010
  • The named entity recognition task is one of the most important subtasks in Information Extraction. In this paper, we describe a Korean named entity recognition using structural Support Vector Machines (structural SVMs) and modified Pegasos algorithm. Using the proposed approach, we could achieve an 85.43% F1 and an 86.79% F1 for 15 named entity types on TV domain and sports domain, respectively. Moreover, we reduced the training time to 4% without loss of performance compared to Conditional Random Fields (CRFs).

  • PDF

Study of Personal Credit Risk Assessment Based on SVM

  • LI, Xin;XIA, Han
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.10
    • /
    • pp.1-8
    • /
    • 2022
  • Purpose: Support vector machines (SVMs) ensemble has been proposed to improve classification performance of Credit risk recently. However, currently used fusion strategies do not evaluate the importance degree of the output of individual component SVM classifier when combining the component predictions to the final decision. To deal with this problem, this paper designs a support vector machines (SVMs) ensemble method based on fuzzy integral, which aggregates the outputs of separate component SVMs with importance of each component SVM. Research design, data, and methodology: This paper designs a personal credit risk evaluation index system including 16 indicators and discusses a support vector machines (SVMs) ensemble method based on fuzzy integral for designing a credit risk assessment system to discriminate good creditors from bad ones. This paper randomly selects 1500 sample data of personal loan customers of a commercial bank in China 2015-2020 for simulation experiments. Results: By comparing the experimental result SVMs ensemble with the single SVM, the neural network ensemble, the proposed method outperforms the single SVM, and neural network ensemble in terms of classification accuracy. Conclusions: The results show that the method proposed in this paper has higher classification accuracy than other classification methods, which confirms the feasibility and effectiveness of this method.

Modified Fixed-Threshold SMO for 1-Slack Structural SVMs

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.120-128
    • /
    • 2010
  • In this paper, we describe a modified fixed-threshold sequential minimal optimization (FSMO) for 1-slack structural support vector machine (SVM) problems. Because the modified FSMO uses the fact that the formulation of 1-slack structural SVMs has no bias, it breaks down the quadratic programming (QP) problems of 1-slack structural SVMs into a series of smallest QP problems, each involving only one variable. For various test sets, the modified FSMO is as accurate as existing structural SVM implementations (n-slack and 1-slack SVM-struct) but is faster on large data sets.

The Application of RL and SVMs to Decide Action of Mobile Robot

  • Ko, Kwang-won;Oh, Yong-sul;Jung, Qeun-yong;Hoon Heo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.496-499
    • /
    • 2003
  • Support Vector Machines (SVMs) is applied to a practical problem as one of standard tools for machine learning. The application of Reinforcement Learning (RL) and SVMs in action of mobile robot is investigated. A technique to decide the action of autonomous mobile robot in practice is explained in the paper, The proposed method is to find n basis for good action of the system under unknown environment. In multi-dimensional sensor input, the most reasonable action can be automatically decided in each state by RL. Using SVMs, not only optimal decision policy but also generalized state in unknown environment is obtained.

  • PDF

Deep LS-SVM for regression

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.827-833
    • /
    • 2016
  • In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.