• Title/Summary/Keyword: SVM 분류기

Search Result 302, Processing Time 0.028 seconds

Recognition Performance Comparison to Various Features for Speech Recognizer Using Support Vector Machine (음성 인식기를 위한 다양한 특징 파라메터의 SVM 인식 성능 비교)

  • 김평환;박정원;김창근;이광석;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.78-81
    • /
    • 2003
  • 본 논문은 SVM(support vector machine)을 이용한 음성인식기에 대해 효과적인 특징 파라메터를 제안한다. SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있으며 최적의 특징 파라메터를 선택하기 위해 본 논문에서는 SVM을 이용한 음성인식기를 사용하여 PCA(principal component analysis), ICA(independent component analysis) 알고리즘을 적용하여 MFCC(met frequency cepstrum coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 ICA에 의한 특징 파라메터가 가장 우수한 성능을 나타내었으며 특징 공간에서 각 클래스의 분포도 또한 ICA가 가장 높은 선형 분별성을 나타내었다.

  • PDF

International Patent Classificaton Using Latent Semantic Indexing (잠재 의미 색인 기법을 이용한 국제 특허 분류)

  • Jin, Hoon-Tae
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1294-1297
    • /
    • 2013
  • 본 논문은 기계학습을 통하여 특허문서를 국제 특허 분류(IPC) 기준에 따라 자동으로 분류하는 시스템에 관한 연구로 잠재 의미 색인 기법을 이용하여 분류의 성능을 높일 수 있는 방법을 제안하기 위한 연구이다. 종래 특허문서에 관한 IPC 자동 분류에 관한 연구가 단어 매칭 방식의 색인 기법에 의존해서 이루어진바가 있으나, 현대 기술용어의 발생 속도와 다양성 등을 고려할 때 특허문서들 간의 관련성을 분석하는데 있어서는 단어 자체의 빈도 보다는 용어의 개념에 의한 접근이 보다 효과적일 것이라 판단하여 잠재 의미 색인(LSI) 기법에 의한 분류에 관한 연구를 하게 된 것이다. 실험은 단어 매칭 방식의 색인 기법의 대표적인 자질선택 방법인 정보획득량(IG)과 카이제곱 통계량(CHI)을 이용했을 때의 성능과 잠재 의미 색인 방법을 이용했을 때의 성능을 SVM, kNN 및 Naive Bayes 분류기를 사용하여 분석하고, 그중 가장 성능이 우수하게 나오는 SVM을 사용하여 잠재 의미 색인에서 명사가 해당 용어의 개념적 의미 구조를 구축하는데 기여하는 정도가 어느 정도인지 평가함과 아울러, LSI 기법 이용시 최적의 성능을 나타내는 특이값의 범위를 실험을 통해 비교 분석 하였다. 분석결과 LSI 기법이 단어 매칭 기법(IG, CHI)에 비해 우수한 성능을 보였으며, SVM, Naive Bayes 분류기는 단어 매칭 기법에서는 비슷한 수준을 보였으나, LSI 기법에서는 SVM의 성능이 월등이 우수한 것으로 나왔다. 또한, SVM은 LSI 기법에서 약 3%의 성능 향상을 보였지만 Naive Bayes는 오히려 20%의 성능 저하를 보였다. LSI 기법에서 명사가 잠재적 의미 구조에 미치는 영향은 모든 단어들을 내용어로 한 경우 보다 약 10% 더 향상된 결과를 보여주었고, 특이값의 범위에 따른 성능 분석에 있어서는 30% 수준에 Rank 되는 범위에서 가장 높은 성능의 결과가 나왔다.

Prostate Object Extraction in Ultrasound Volume Using Wavelet Transform (초음파 볼륨에서 웨이브렛 변환을 이용한 전립선 객체 추출)

  • Oh Jong-Hwan;Kim Sang-Hyun;Kim Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.67-77
    • /
    • 2006
  • This thesis proposes an effi챠ent method for extracting a prostate volume from 3D ultrasound image by using wavelet transform and SVM classification. In the proposed method, a modulus image for each 2D slice is generated by averaging detail images of horizontal and vertical orientations at several scales, which has the sharpest local maxima and the lowest noise power compared to those of all single scales. Prostate contour vertices are determined accurately using a SVM classifier, where feature vectors are composed of intensity and texture moments investigated along radial lines. Experimental results show that the proposed method yields absolute mean distance of on average 1.89 pixels when the contours obtained manually by an expert are used as reference data.

Licence Plate Recognition Using a Multiple SVM Classifier Combined with Modular Neural Network (모듈라 신경망이 결합된 다중 SVM 분류기를 이용한 번호판 인식)

  • 박창석;김병만;김준우;이광호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.796-798
    • /
    • 2004
  • 기존의 번호판 인식 시스템에서는 대부분 카메라가 고정 상태에서 차량의 전면부를 찍어 영상을 획득하고, 이로부터 번호판을 추출하고 인식한다 그러나 본 연구에서는 기존 연구들과 달리 이동 중인 자동차에 카메라를 설치하여 움직이는 자동차의 영상을 획득하여 번호판을 추출하고 인식한다. 인식하고자 하는 영상이 잡음이나 왜곡 없이 깨끗하다면 인식 과정은 간단하게 수행될 것이다. 그러나, 실제로 얻어진 영상은 간단한 방법으로 인식하기에는 어려올 정도로 왜곡이나 변형이 심한 경우가 많다. 따라서 본 논문에서는 SVM 전단에 모듈라 신경망을 결합하여 인식하는 방법을 사용함으로써 잡음과 같은 변형에 덜 민감하도록 하고자 하였다. 실험결과, 제안하는 분류기를 이용한 방법이 번호판 인식에 우수한 성능을 보임을 확인하였다.

  • PDF

A Design of an Optimized Classifier based on Feature Elimination for Gene Selection (유전자 선택을 위해 속성 삭제에 기반을 둔 최적화된 분류기 설계)

  • Lee, Byung-Kwan;Park, Seok-Gyu;Tifani, Yusrina
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.384-393
    • /
    • 2015
  • This paper proposes an optimized classifier based on feature elimination (OCFE) for gene selection with combining two feature elimination methods, ReliefF and SVM-RFE. ReliefF algorithm is filter feature selection which rank the data by the importance of the data. SVM-RFE algorithm is a wrapper feature selection which wrapped the data and rank the data based on the weight of feature. With combining these two methods we get less error rate average, 0.3016138 for OCFE and 0.3096779 for SVM-RFE. The proposed method also get better accuracy with 70% for OCFE and 69% for SVM-RFE.

Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis (망막색소변성 데이터의 예후 예측을 위한 패턴 분류)

  • Kim, Hyun-Mi;Woo, Yong-Tae;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.701-710
    • /
    • 2012
  • Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.

Speech emotion recognition for affective human robot interaction (감성적 인간 로봇 상호작용을 위한 음성감정 인식)

  • Jang, Kwang-Dong;Kwon, Oh-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.555-558
    • /
    • 2006
  • 감정을 포함하고 있는 음성은 청자로 하여금 화자의 심리상태를 파악할 수 있게 하는 요소 중에 하나이다. 음성신호에 포함되어 있는 감정을 인식하여 사람과 로봇과의 원활한 감성적 상호작용을 위하여 특징을 추출하고 감정을 분류한 방법을 제시한다. 음성신호로부터 음향정보 및 운율정보인 기본 특징들을 추출하고 이로부터 계산된 통계치를 갖는 특징벡터를 입력으로 support vector machine (SVM) 기반의 패턴분류기를 사용하여 6가지의 감정- 화남(angry), 지루함(bored), 기쁨(happy), 중립(neutral), 슬픔(sad) 그리고 놀람(surprised)으로 분류한다. SVM에 의한 인식실험을 한 경우 51.4%의 인식률을 보였고 사람의 판단에 의한 경우는 60.4%의 인식률을 보였다. 또한 화자가 판단한 감정 데이터베이스의 감정들을 다수의 청자가 판단한 감정 상태로 변경한 입력을 SVM에 의해서 감정을 분류한 결과가 51.2% 정확도로 감정인식하기 위해 사용한 기본 특징들이 유효함을 알 수 있다.

  • PDF

Comparison Between Optimal Features of Korean and Chinese for Text Classification (한중 자동 문서분류를 위한 최적 자질어 비교)

  • Ren, Mei-Ying;Kang, Sinjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2015
  • This paper proposed the optimal attributes for text classification based on Korean and Chinese linguistic features. The experiments committed to discover which is the best feature among n-grams which is known as language independent, morphemes that have language dependency and some other feature sets consisted with n-grams and morphemes showed best results. This paper used SVM classifier and Internet news for text classification. As a result, bi-gram was the best feature in Korean text categorization with the highest F1-Measure of 87.07%, and for Chinese document classification, 'uni-gram+noun+verb+adjective+idiom', which is the combined feature set, showed the best performance with the highest F1-Measure of 82.79%.

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Ensemble Learning of Region Based Classifiers (지역 기반 분류기의 앙상블 학습)

  • Choi, Sung-Ha;Lee, Byung-Woo;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.303-310
    • /
    • 2007
  • In machine learning, the ensemble classifier that is a set of classifiers have been introduced for higher accuracy than individual classifiers. We propose a new ensemble learning method that employs a set of region based classifiers. To show the performance of the proposed method. we compared its performance with that of bagging and boosting, which ard existing ensemble methods. Since the distribution of data can be different in different regions in the feature space, we split the data and generate classifiers based on each region and apply a weighted voting among the classifiers. We used 11 data sets from the UCI Machine Learning Repository to compare the performance of our new ensemble method with that of individual classifiers as well as existing ensemble methods such as bagging and boosting. As a result, we found that our method produced improved performance, particularly when the base learner is Naive Bayes or SVM.