• Title/Summary/Keyword: SVM 분류기

Search Result 302, Processing Time 0.026 seconds

Passing Vehicle Detection using Local Binary Pattern Histogram (국부이진패턴 히스토그램을 이용한 측면 차량 검출)

  • Kang, Hyung-Sub;Cho, Dong-Chan;Ko, Kyung-Woo;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.260-263
    • /
    • 2010
  • 본 논문에서는 주행 중인 차량에서 전방을 향해 장착된 카메라를 통해 입력된 영상에서 측면에 부분적으로 나타나는 차량을 검출하는 방법을 제안한다. 기존 연구에서는 모션 벡터를 이용하여 주변 배경과 관측되는 차량 사이의 모션 벡터 차이를 이용하여 측면 차량을 검출하고 있다. 그러나 모션 벡터를 이용할 경우 정지된 차량이나 전방에서 다가오는 차량의 경우 검출하기 어려운 점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 모션 벡터를 사용하지 않고 차량 측면 모습에서 특징 정보를 추출하여 SVM 분류기를 통해 측면 차량을 검출하는 방법을 제안한다. 차량 측면 모습의 특징을 뽑기 위해 영상의 밝기 변화에 강인한 국부 이진 패턴을 사용하였고 ROI영역 내에서 차량이 나타나는 위치에 상관없이 차량의 측면 모습을 찾아내기 위해 국부 이진 패턴의 히스토그램을 이용하였다. 실험결과에서는 제안하는 방법이 정지된 차량을 포함하여 88.5%의 정확도로 측면 차량을 검출하는 것을 확인하였다.

  • PDF

A Speech Emotion Recognition System for Audience Response Collection (관객 반응정보 수집을 위한 음성신호 기반 감정인식 시스템)

  • Kang, Jin Ah;Kim, Hong Kook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.56-57
    • /
    • 2013
  • 본 논문에서는 연극공연을 관람하는 관객의 반응정보를 수집하기 위하여, 청각센서를 통해 관객의 음성을 획득하고 획득된 음성에 대한 감정을 예측하여 관객 반응정보 관리시스템에 전송하는 음성신호 기반 감정인식 시스템을 구현한다. 이를 위해, 관객용 헤드셋 마이크와 다채널 녹음장치를 이용하여 관객음성을 획득하는 인터페이스와 음성신호의 특징벡터를 추출하여 SVM (support vector machine) 분류기에 의해 감정을 예측하는 시스템을 구현하고, 이를 관객 반응정보 수집 시스템에 적용한다. 실험결과, 구현된 시스템은 6가지 감정음성 데이터를 활용한 성능평가에서 62.5%의 인식률을 보였고, 실제 연극공연 환경에서 획득된 관객음성과 감정인식 결과를 관객 반응정보 수집 시스템에 전송함을 확인하였다.

  • PDF

On-line Signature Verification Using Fusion Of Segment Matching and HMM (구간 분할 및 HMM 기반 융합 모델에 의한 온라인 서명 검증)

  • 양동화;이대종;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.271-274
    • /
    • 2004
  • 기존의 참조서명과 입력서명을 비교하는 방법 중 분절 단위 비교 방법은 전역적 방법과 점단위 방법에 비하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 본 연구에서는 분절 단위 비교 방법을 이용한 서명검증의 신뢰도를 향상시키기 위해 두 가지 형태의 모델을 구축하였다. 우선 기존에 사용된 구간 분할 매칭 방법을 사용하여 매칭도를 산출하였다. 다음으로 서명의 분할된 영역을 주성분 분석 기법에 의해 특징 벡터를 산출한 후 HMM에 의해 서명 모델을 구축하였다. 산출된 두 특징을 융합하는 방법으로는 SVM 분류기를 사용하였다 실험 결과 제안된 기법은 분절 단위 기반의 구간분할매칭 기법에 비해 우수한 성능을 나타냈다.

  • PDF

Past Tense Generation in Korean to French Machine Translation (한국어-프랑스어 자동번역을 위한 과거시제 선어말어미 '-었'의 처리방안)

  • Lim, Seunghee;Noh, Ran;Hong, Munpyo
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.173-174
    • /
    • 2014
  • 본 연구는 현재 개발 진행 중인 다국어 자동통번역시스템에서 발생하는 한국어 과거시제 선어말어미 '-었'의 생성문제를 다루었다. 한국어 과거시제 선어말 어미는 영어와 독일어의 경우에는 대부분 단순과거형으로 생성될 수 있으나, 프랑스어의 경우에는 복합과거의 형식과 반과거의 형식 중 하나를 선택해야 하는 문제가 발생한다. 본 연구에서는 이러한 문제의 해결을 위해 한-프랑스어 코퍼스 분석을 통해 복합과거와 반과거의 올바른 생성을 위한 네 가지의 자질을 선정하였고, 이에 SVM 알고리즘을 적용한 분류기를 구현하였다. 현재까지의 실험결과는 84.45%의 정확률이며 현재 성능개선을 위한 연구가 계속 진행 중이다.

  • PDF

Improvement Regression Rate of Kernel Relaxation using the Dynamic Momentum (동적모멘트를 이용한 Kernel Relaxation의 회귀율 향상)

  • 김은미;양창호;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.313-315
    • /
    • 2002
  • 본 논문에서는 학습 중 모멘트를 동적으로 조절하여 수련속도와 학습 성능을 향상시키는 동적모멘트를 제안하고 회귀방법으로 동적모멘트의 성능을 재확인한다. 제안된 학습방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 단리 반영하는 방법으로 다른 학습법에 비해 보다 유연한 초평면을 갖으며 수렴에 이르는 시간이 오래 걸리는 KR(Kernel Relaxation)에 적용하여 그 성능을 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(support vector machine)의 순차 학습방법 중 최근 발표된 KR에 적용하여 RMS 오류율을 확인하였다. 실험의 공정성을 위해 신경망 분류기 표준평가데이터인 SONAR 데이터를 사용하였으며 실험 결과 동적모멘트를 이용한 회귀율이 정적모멘트를 이용한 방법보다 향상되었음을 확인하였다.

  • PDF

Scene Text Detection Using Color-Based Binarization and Text Region Verification Using Support Vector Machine (색기반 이진화를 이용한 장면 텍스트 추출과 써포트 벡터머신을 이용한 텍스트 영역 검증)

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.161-163
    • /
    • 2007
  • 기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.

  • PDF

A New Kernelized Approach to Recommender System (커널 함수를 도입한 새로운 추천 시스템)

  • Lee, Jae-Hun;Hwang, Jae-Pil;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.624-629
    • /
    • 2011
  • In this paper, a new kernelized approach for use in a recommender system (RS) is proposed. Using a machine learning technique, the proposed method predicts the user's preferences for unknown items and recommends items which are likely to be preferred by the user. Since the ratings of the users are generally inconsistent and noisy, a robust binary classifier called a dual margin Lagrangian support vector machine (DMLSVM) is employed to suppress the noise. The proposed method is applied to MovieLens databases, and its effectiveness is demonstrated via simulations.

Verification of Individual Characteristic in Electrocardiogram (심전도 신호 내 개인별 특이점 검증)

  • Lee, Byunghan;Choi, Hyun-soo;Kim, Saejung;Yoon, Sungroh
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.57-58
    • /
    • 2014
  • 본 연구에서는 여러 가지 생체 신호 중 심전도 신호를 대상으로 하여 개인별 구분이 가능한 특이점이 검출 되는지 기계 학습을 통하여 검증하였다. 심장 질환이 없는 정상인을 대상으로 수집한 신호로 부터 8가지 기점 특징을 추출하였으며, 동일 오류율과 AUC를 평가 척도로 하여 SVM 분류기를 이용한 경우 개인별 특이점이 효과적으로 구분됨을 확인하였다.

Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor (SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection (감성판별을 위한 생체신호기반 특징선택 분류기 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.206-216
    • /
    • 2013
  • The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.