• Title/Summary/Keyword: SVM 분류기

검색결과 302건 처리시간 0.027초

Support Vector Machine을 이용한 생체 신호 분류기 개발 (Development of a Clinical Decision Support System Utilizing Support Vector Machine)

  • 홍동권;채용웅
    • 한국전자통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.661-668
    • /
    • 2018
  • 피부 저항을 이용한 생체 신호는 스트레스성 질환에 따라 각각 다른 특성을 보이고 있으며 이 특성을 이용하여 스트레스성 질환을 진단하는 생체진단 장비들이 개발 되었으며, 장비들은 피부 저항 측정기에서 측정한 신호를 해석하기 쉽게 출력해주며, 그 분야의 전문가는 출력 신호를 직접 보고 어떤 스트레스성 질환의 가능성이 높은지를 판단하게 된다. 하지만 각 측정 대상자에게서 측정된 생체 신호를 분석하여 측정 대상자가 어떤 스트레스성 질환을 가지고 있는지를 사람이 정확히 판단하기는 매우 어려울 뿐만 아니라 판단의 결과가 잘못될 가능성도 매우 높다. 이런 문제점을 해결하기 위하여 본 연구에서는 머신러닝 기법을 이용하여 측정된 신호가 어떤 스트레스성 질환의 신호에 해당하는지를 판단하는 기능을 구현하였다. 측정 장비의 낮은 컴퓨팅 능력을 고려하여 분류 기법은 SVM을 사용하였으며, 훈련 데이터와 테스트 데이터는 13개의 질환을 중심으로 오차범위 5를 사용하여 각 질환 당 1,000개를 랜덤하게 생성하여 사용하였다. 모의실험 결과에서 90% 이상의 판단 정확도를 보였으며 앞으로 측정 장비가 실제로 환자들에게 적용되면 다시 생성된 데이터로 분류기를 재훈련 할 수 있게 구성하였다.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.133-153
    • /
    • 2023
  • 본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 항상 유망한 분류성능을 보장할 수 없음을 시사한다.

SVM 기계학습을 이용한 웹문서의 자동 의미 태깅 (Automatic semantic annotation of web documents by SVM machine learning)

  • 황운호;강신재
    • 한국산업정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.49-59
    • /
    • 2007
  • 본 논문은 시맨틱 웹의 실현을 위해서는 필수적인 작업인 웹문서의 의미를 자동으로 태깅할 수 있는 시스템에 관한 것이다. 웹상의 방대한 자원을 일일이 사람이 수작업으로 의미를 태깅한다는 것은 사실상 불가능하기 때문에 한국어 웹문서를 대상으로 대량의 학습 데이터를 수집하고 자연어처리 기법과 시소러스를 이용하여 특징을 추출한 후 SVM 기계학습을 통하여 개념분류기를 구축하였다. 한국어의 특징을 파악하여 의미 태깅에 필요한 특징 정보를 추출하기 위해서 형태소 분석과 구문 분석을 하였다. 추출된 특징정보는 가도카와 시소러스의 의미코드를 이용하여 학습벡터로 구성되는데, 이는 유사한 단어나 구를 하나의 개념코드로 매핑하여 시스템의 재현율을 높이는 역할을 하게 된다. 실험결과 자동 의미 태깅 분야에서 본 접근방법의 가능성을 확인할 수 있었다.

  • PDF

GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석 (Application and Performance Analysis of Machine Learning for GPS Jamming Detection)

  • 정인환
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.47-55
    • /
    • 2019
  • 최근 GPS 재밍으로 인한 피해가 증가되면서 GPS 재밍을 탐지하고 대비하기 위한 연구가 활발히 진행되고 있다. 본 논문은 다중 GPS 수신채널과 3가지 기계학습을 이용한 GPS 재밍 탐지 방법을 다루고 있다. 제안된 다중 GPS 채널은 항재밍 기능이 없는 상용 GPS 수신기와 항잡음 재밍능력만 있는 수신기, 항잡음/항기만 재밍능력이 있는 수신기로 구성되고 운용자는 각각의 수신기에 수신된 좌표를 비교하여 재밍신호의 특성을 식별할 수 있다. 본 논문에서는 신호특성이 다른 각각의 5개 재밍신호를 입력하고, 3가지 기계학습방법(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree)을 이용하여 재밍탐지 시험을 수행하였다. 시험 결과 머신러닝 기법을 단독으로 사용하였을 때 DT 기법이 96.9% 탐지율로 가장 우수한 성능을 보였으며 이진분류기 기법에 비해 모호성 낮고 하드웨어가 단순하여 GPS 재밍탐지에 효과적임을 확인하였다. 또한, 모호성을 해결해주는 추가기법을 적용할 경우 SVM 기법을 활용할 수 있음을 확인하였다.

무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 - (Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do -)

  • 정찬희;고승환;박종화
    • 농촌계획
    • /
    • 제28권1호
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.

주파수 공간상의 특징 데이터를 활용한 손목에 부착된 가속도 센서 기반의 낙상 감지 (Fall detection based on acceleration sensor attached to wrist using feature data in frequency space)

  • 노정현;김진헌
    • 스마트미디어저널
    • /
    • 제10권3호
    • /
    • pp.31-38
    • /
    • 2021
  • 낙상사고는 언제, 어디에서 일어날지 예측하기 어렵다. 또한 신속한 후속 조치가 수행되지 않으면 생명의 위협으로 이어지므로 낙상사고를 자동으로 감지할 수 있는 연구가 필요하게 되었다. 자동적인 낙상사고 감지기법 중 손목에 부착된 IMU 센서를 활용한 기법은 움직임이 많아 낙상사고 검출이 어렵지만, 착용의 간편함과 접근성이 뛰어난 기법으로 인식되고 있다. 낙상 데이터 확보의 어려움을 극복하기 위해 본 연구는 KNN과 SVM과 같은 머신러닝으로 적은 데이터를 효율적으로 학습하는 알고리즘을 제안한다. 또한, 이들 수학적 분류기의 성능을 높이기 위해 본 연구에서는 주파수 공간에서 취득한 특징 데이터를 활용하였다. 제안된 알고리즘은 표준 데이터세트를 활용한 실험을 통해 모델의 파라미터와 주파수 특징 추출기의 파라미터를 다각화하여 그 영향을 분석하였다. 제안된 알고리즘은 학습 데이터를 확보하기 어려운 현실적인 문제에 적절히 대처할 수 있었다. 또한 본 알고리즘이 다른 분류기보다 경량화되어 있기 때문에 SIMD(Single Instruction Multiple Data) 처리장치 탑재가 어려운 소형 임베디드시스템에도 구현이 용이했다.

Stacked Autoencoder 기반 악성코드 Feature 정제 기술 연구 (Stacked Autoencoder Based Malware Feature Refinement Technology Research)

  • 김홍비;이태진
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.593-603
    • /
    • 2020
  • 네트워크의 발전에 따라 악성코드 생성도구가 유포되는 등으로 인해 악성코드의 출현이 기하급수적으로 증가하였으나 기존의 악성코드 탐지 방법을 통한 대응에는 한계가 존재한다. 이러한 상황에 따라 머신러닝 기반의 악성 코드탐지 방법이 발전하는 추세이며, 본 논문에서는 머신러닝 기반의 악성 코드 탐지를 위해 PE 헤더에서 데이터의 feature를 추출한 후 이를 이용하여 autoencoder를 통해 악성코드를 더 잘 나타내는 feature 및 feature importance를 추출하는 방법에 대한 연구를 진행한다. 본 논문은 악성코드 분석에서 범용적으로 사용되는 PE 파일에서 확인 가능한 DLL/API 등의 정보로 구성된 549개의 feature를 추출하였고 머신러닝의 악성코드 탐지 성능향상을 위해 추출된 feature를 이용하여 autoencoder를 통해 데이터를 압축적으로 저장함으로써 데이터의 feature를 효과적으로 추출해 우수한 정확도 제공 및 처리 시간을 2배 단축에 성공적임을 증명하였다. 시험 결과는 악성코드 그룹 분류에도 유용함을 보였으며, 향후 SVM과 같은 분류기를 도입하여 더욱 정확한 악성코드 탐지를 위한 연구를 이어갈 예정이다.

스마트폰을 이용한 SVM 기반 망막 질병 진단을 위한 지능적인 의사 결정 지원 시스템 (An Intelligent Decision Support System for Retinal Disease Diagnosis based on SVM using a Smartphone)

  • 이병관;정은희;유슬리나 티파니
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.373-383
    • /
    • 2015
  • 이 논문은 망막 질병을 인지하기 위한 의사결정 지원 시스템을 제안한다. 이 논문은 시스템의 기초로써 스마트 폰 플랫폼과 클라우드 컴퓨팅을 사용한다. 마이크로 렌즈는 사용자의 망막 상태를 인지하기 위해 사용자 망막 이미지를 캡쳐 할 수 있도록 스마트 폰 카메라에 부착되어 있다. 어플리케이션은 컴퓨터에서 생성된 후에 스마트 폰에 설치된다. 이 어플리케이션의 역할은 스마트 폰에 있는 시스템과 클라우드에 있는 시스템 사이를 연결시키는 것으로, 어플리케이션은 분류하기 위해 클라우드 시스템에 망막 이미지를 전송하는 것이다. 이 논문은 분류기로써 OCFE 알고리즘을 사용한다. 망막 이미지는 두 개의 안과학 데이터베이스 DIARETDB1 v2.1과 STARE의 조합을 사용하여 실험하였다. 그리하여 평균 에러율을 12%인 반면에, 이 시스템 평균 정확도는 88%로 나타났다.

페로몬 트랩 영상에서 해충 검출을 위한 객체 분할 (Object Segmentation for Detection of Moths in the Pheromone Trap Images)

  • 김태우;조태경
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.157-163
    • /
    • 2017
  • 객체 분할 방식은 객체를 먼저 분할한 후, 검출된 객체에 대해 해충 검출 알고리즘을 적용하므로 해충 개체를 검출하는 데 필요한 처리 비용이 줄어드는 장점이 있다. 본 논문에서는 페로몬 트랩 영상에서 해충 검출을 위한 객체 분할 방법을 제안한다. 제안한 방법은 전처리, 문턱치 처리, 형태학적 필터링, 레이블링 처리로 구성된다. 이들 과정 중 문턱치 처리는 객체 분할의 성능을 좌우하는 매우 중요한 처리 과정이다. 제안한 방법은 문턱치 처리 과정에서 해충 영상의 국소적 특성을 반영하므로 매우 정교한 문턱치 처리를 할 수 있다. 과수원에 설치된 페로몬 트랩에서 수집된 복숭아심식나방 영상에 대해 Otsu의 방법의 전역적 방식과 국소적 방식, 그리고 제안한 방법으로 처리한 결과, 제안한 방법이 조명과 배경의 특성을 잘 반영함을 알 수 있었다. 페로몬 트랩에 수집된 복숭아심식나방 영상에 대해 객체 분할과 개체 분류를 수행하였다. 개체 분류는 SVM 분류기로 학습하여 사용하였다. 실험에서 제안한 방법으로 10개의 해충 영상에 대해 복숭아심식나방 검출 결과 95%의 평균 검출율을 보임으로써 과수원의 복숭아심식나방의 개체 모니터링 방법으로서 효과적임을 보였다.

HDR 비디오의 플리커 저감효과를 위한 톤 안정화 알고리즘 연구

  • 김정태;이현규;이상철
    • 정보와 통신
    • /
    • 제33권9호
    • /
    • pp.24-29
    • /
    • 2016
  • 영상의 화질 개선과 높은 대비를 얻기 위한 방법으로 최근 HDR(High Dynamic Range)영상을 디스플레이 장치에 매핑시키기 위한 톤매핑 기술이 널리 이용되고 있다. 하지만 단일프레임이 아닌 다중프레임으로 구성되어 있는 비디오에 이러한 톤매핑기술을 적용할 경우, 프레임 간 명암도 차이로 인하여 시각적으로 깜빡이는 현상인 플리커(Flicker)가 발생할 수 있으며, 이로 인해 사용자의 눈에 피로도를 증가시키고, 영상의 품질이 감소할 수 있다. 본 논문에서는 플리커 판별을 위해 영상의 명암도 측정법을 제안하여, 프레임별 명암값을 학습하기 위한 다양한 특징벡터를 정의한다. 학습된 SVM(Support Vector Machine) 분류기를 이용하여 플리커 발생 프레임을 선별하고 플리커 제거를 위한 톤 안정화 방법을 제안한다. 실험에서 제안한 방법을 통해 86.7%의 플리커를 검출하였으며, 프레임 간 톤 안정화 알고리즘의 최적화를 통해 플리커 발생빈도를 69.8% 감소시켰다.