• Title/Summary/Keyword: SVM 모델

Search Result 398, Processing Time 0.034 seconds

PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석 (A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures)

  • 박찬준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측 (Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine)

  • 양학진;신현찬;김성근
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.364-371
    • /
    • 2016
  • 본 논문에서는 차량이 주차된 지형의 조건에 따라 적용되는 도어 개폐 보조력 예측 모델을 제시하였다. 경사도, 사용자의 힘 등의 조건에 따른 개폐력 설정을 위하여 작동 보조력에 대한 학습 모델을 구현하여 비교하였고, 예측 모델의 학습을 위하여 축소모형을 제작하여 실험을 통해 학습데이터를 얻을 수 있는 실험 모델을 구성하였다. 실제 보상력 데이터를 학습, 반영하여 적정 값을 도출할 수 있는 학습 알고리즘을 개발하고, 이를 적용할 수 있는 시스템을 개발하였다. 학습 방법 중에서 인공신경망(Artificial Neural Network, ANN)과 서포트 벡터 머신(Support Vector Machine, SVM) 알고리즘을 적용하여 비교 검증하였다. 실제 측정값과 비교 검증한 결과, 차량의 도어 개폐 보조력 예측을 위해서 서포트 벡터 머신의 상대적으로 높은 적용성을 확인할 수 있었으며, 이 예측 모델을 활용하여 경사, 사용자의 힘에 따라 도어 개폐 구동 모터가 보상해야 할 적정한 힘을 예측하여 시간에 따라 구동함으로써 사용자가 평지와 같은 힘으로 문을 제어할 수 있는 시스템 구성을 제시하였다.

계층적 SVM을 이용한 전력용 변압기 고장진단 (Fault Diagnosis of Power Transformer Using Hierarchical SVM)

  • 임재윤;이대종;이종필;박재원;지평식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.279-281
    • /
    • 2007
  • 본 논문에서는 계층적 SVM을 이용한 전력용 변압기의 고장진단 기법을 제안한다. 제안된 기법은 전처리 과정, 정상/고장판별 부, 고장원인판별부, 열화추이분석부로 구성된다. 제안한 고장진단과정을 보면, 전처리부에서는 DGA에 의해 얻어진 가스 데이터의 특징벡터를 산출한다. 그 다음단계로 정상/고장 판별부에서는 얻어진 특징벡터를 이용하여 SVM에 의해 정상/고장 여부를 진단한다. 고장원인 판별부에서는 진단하고자 하는 변압기가 고장으로 판정이 난 경우에 다중-클래스 SVM에 의해 고장원인을 판정한다. 또한 정상/고장판별에서 정상이라 판정할 지라도 열화추이분석부에서 FCM에 의해 구축된 고장모델과 정상데이터간의 거리척도를 이용하여 고장추이론 분서한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해서 향상된 진단결과를 보임을 확인하였다.

  • PDF

SVM과 다각형 기반의 Q-learning 알고리즘을 이용한 군집로봇의 목표물 추적 알고리즘 (Object tracking algorithm of Swarm Robot System for using SVM and Polygon based Q-learning)

  • 서상욱;양현창;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.143-146
    • /
    • 2008
  • 본 논문에서는 군집로봇시스템에서 목표물 추적을 위하여 SVM을 이용한 12각형 기반의 Q-learning 알고리즘을 제안한다. 제안한 알고리즘의 유효성을 보이기 위해 본 논문에서는 여러대의 로봇과 장애물 그리고 하나의 목표물을 정하고, 각각의 로봇이 숨겨진 목표물을 찾아내는 실험을 가정하여 무작위, DBAM과 ABAM의 융합 모델, 그리고 마지막으로 본 논문에서 제안한 SVM과 12각형 기반의 Q-learning 알고리즘을 이용하여 실험을 수행하고, 이 3가지 방법을 비교하여 본 논문의 유효성을 검증하였다.

  • PDF

HOG 기술자를 이용한 중이염 자동 판별 방법 (Middle Ear Disease Decision Scheme using HOG Descriptor)

  • 정나라;송재욱;강현수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.693-694
    • /
    • 2015
  • 본 논문은 소아 및 성인의 중이염을 자동 판별할 수 있는 알고리즘을 제안한다. 제안 방법은 중이염 영상과 정상 영상 데이터베이스에서 HOG(histogram of oriented gradient) 기술자를 사용하여 특징을 추출한 다음 SVM(support vector machine) 분류기를 통하여 추출된 특징들을 학습시킨다. 입력 영상이 학습된 특징들의 모델을 기반으로 SVM 분류기를 통하여 중이염 여부가 판별된다. 실험결과 제안한 방법이 정확도 90% 이상의 판별 성능을 나타내었다.

  • PDF

OVA SVM의 동적 결합을 이용한 효과적인 지문분류 (Effective Fingerprint Classification with Dynamic Integration of OVA SVMs)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.883-885
    • /
    • 2005
  • 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 다중부류 분류기법이 최근 활발히 연구되고 있다. SVM은 이진분류기이기 때문에 다중부류 분류를 위해서 다수의 분류기를 구성하고 이들을 효과적으로 결합하는 방법이 필요하다. 본 논문에서는 기존의 정적인 다중분류기 결합 방법과는 달리 포섭구조의 분류모델을 확률에 따라 동적으로 구성하는 방법을 제안한다. 확률적 분류기인 나이브 베이즈 분류기(NB)를 이용하여 입력된 샘플의 각 클래스에 대한 확률을 계산하고, OVA (One-Vs-All) 전략으로 구축된 다중의 SVM을 획득된 확률에 따라 포섭구조로 구성한다. 제안하는 방법은 OVA SVM에서 발생하는 중의적인 상황을 효과적으로 처리하여 고성능의 분류를 수행한다. 본 논문에서는 지문분류 문제에서 대표적인 NIST-4 지문 데이터베이스를 대상으로 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.8\%$의 분류율을 획득하였으며, 기존의 결합 방법인 다수결 투표(Majority vote), 승자독식(Winner-takes-all), 행동지식공간 (Behavior knowledge space), 결정템플릿(Decision template) 등보다 높은 성능을 확인하였다.

  • PDF

웹서비스를 이용한 SVM기반 분산 문서분류기 설계 (Design distributed document classifier based on SVM using Web Services)

  • 김용수;박용범
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.501-504
    • /
    • 2004
  • 인터넷이 발달하면서 인터넷 상에서 공유 문서를 효율적으로 분류하기 위한 자동 분류의 필요성이 높아지고 있다. 또한 인터넷은 단순한 문서 제공의 한계를 넘어 어플리케이션간의 통합연동을 위한 기술이 대두되고 있다. 이러한 관점에서 본 논문은 새롭게 제시되고 있는 웹서비스를 이용하여 SVM 기반의 분류기를 분산 구성하여 설계하였고, 문서로부터 추출된 특성단어 벡터정보를 이용하여 SVM 학습 후 각각의 분류기를 통하여 분산 문서 분류를 수행한다. 특성단어 벡터는 $TF^{\ast}IDF$에 기반한 특성 표현법을 사용하였으며, 분류 범주 별로 SVM 기반의 분류기 모델 데이터를 생성하기 위해 특성 단어 사전을 구축하여 분류 기준으로 구성하였다.

  • PDF

병렬 단백질 상호작용 예측 시스템 (A Parallel System for predicting protein-protein interactions)

  • 김세영;정유진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.709-711
    • /
    • 2004
  • 최근 단백질간의 상호작용의 중요성의 이해와 함께 축적되어 가는 단백질 정보들 간의 상호작용을 예측하기 위하여 통계학적 모델인 Support Vector Machine(SVM)을 사용한 예측 실험이 활발하다. 하지만 이는 거대한 생물 데이터를 처리하기 위해 많은 연산시간을 필요로 한다. 즉, 방대하게 존재하는 데이터를 처리하기 위해 SVM을 통한 실험은 정확한 결과뿐만 아니라 빠른 처리속도를 요구하게 되었다. 따라서 본 논문에서는 SVM의 개선을 통해 빠른 처리속도로 데이터를 처리하는 incremental SVM과 이를 병렬화 하여 더욱 빠른 처리시간을 가지는 Parallel SVM(PSVM)을 소개하고 실험해 본다. 즉, 단백질 상호작용에 사용되어지는 데이터를 PSVM을 사용한 실험을 통하여 정확성과 처리속도를 측정, 비교함으로써 단백질 상호작용 예측에 적합한지를 검증해본다.

  • PDF

SVM의 다중결정템플릿을 이용한 지문분류 (Fingerprint Classification using Multiple Decision Templates with SVM)

  • 민준기;홍진혁;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1136-1146
    • /
    • 2005
  • 지문분류는 대규모 자동지문식별시스템에서 지문을 카테고리별로 나누어 매칭시간을 줄이는데 유용하다. 지문을 5가지 클래스로 분류하는 헨리시스템을 기반으로 신경망이나 SYM(Support Vector Machines) 등과 같은 다양한 패턴분류 기법들이 지문분류에 널리 사용되고 있다. 특히 최근에는 높은 분류 성능을 보이는 SVM 분류기를 이용한 연구가 활발하다. 이진분류기인 SVM을 지문분류문제에 적용하기 위해서 본 논문에서는 새로운 분류기 결합모델인 다중결정템플릿(Multiple Decision Templates, MuDTs)을 제안한다. 이 방법은 클래스 구분이 모호한 지문영상들의 분류에서 단일 결합모델들의 한계를 극복하기 위해, 하나의 지문클래스로부터 서로 다른 특성을 갖는 클러스터들을 추출하여 각 클러스터에 적합한 결합모델을 생성한다. NIST Database4 데이타로부터 추출한 핑거코드에 대해 실험한 결과, 5클래스와 4클래스 분류문제에 대하여 각각 $90.4\%$$94.9\%$의 분류성능(거부율 $1.8\%$)을 획득하였다.

머신러닝을 이용한 기관 출력 예측 방법에 관한 연구 (A Machine Learning-Based Method to Predict Engine Power)

  • 김동현;한승재;정봉규;한승훈;이상봉
    • 해양환경안전학회지
    • /
    • 제25권7호
    • /
    • pp.851-857
    • /
    • 2019
  • 본 연구는 운항선의 운항 빅데이터를 활용하여 머신러닝 기법의 선박 마력 예측에 관한 것이다. 현재 신조선에는 ISO15016법을 이용하여 외부환경 요인에 대하여 수식을 통해 저항을 예측하나 관련 계산식이 복잡하고 요구하는 입력변수들이 많아 운항하는 실선 적용에 많은 시간과 비용이 필요하다. 본 연구에서는 최근 예측, 인식 등에서 우수한 성능을 보이는 SVM(Support Vector Machine) 알고리즘을 이용하여 우수한 성능의 선박 출력 예측이 가능한 모델을 제안한다. 제안 예측 모델은 실선 운항 빅데이터만 확보된다면 ISO15016법 대비 우수한 성능의 예측이 가능한 장점이 있다. 본 연구에서는 178K 벌크캐리어의 운항 DATA를 활용하여 ISO15016 기법과 본 연구에서 제안하는 SVM 알고리즘 기반의 마력해석법을 비교하여 ISO15016의 단점인 선박 모델 데이터 준비 부분을 줄이고 부정확한 마력 예측 성능을 개선하였다.