• 제목/요약/키워드: SVM 모델

Search Result 398, Processing Time 0.033 seconds

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.

Feature-Vector Normalization for SVM-based Music Genre Classification (SVM에 기반한 음악 장르 분류를 위한 특징벡터 정규화 방법)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), and Spectral Contract/Roll-Off are combined as a set of multiple feature-vectors for the music genre classification system based on the Support Vector Machine (SVM) classifier. In the conventional system, feature vectors for the entire genre classes are normalized for the SVM model training and classification. However, in this paper, selected feature vectors that are compared based on the One-Against-One (OAO) SVM classifier are only used for normalization. Using OSC as a single feature-vector and the multiple feature-vectors, we obtain the genre classification rates of 60.8% and 77.4%, respectively, with the conventional normalization method. Using the proposed normalization method, we obtain the increased classification rates by 8.2% and 3.3% for OSC and the multiple feature-vectors, respectively.

Comparison of Partial Least Squares and Support Vector Machine for the Flash Point Prediction of Organic Compounds (유기물의 인화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Chang Jun;Ko, Jae Wook;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.717-724
    • /
    • 2010
  • The flash point is one of the most important physical properties used to determine the potential for fire and explosion hazards of flammable liquids. Despite the needs of the experimental flash point data for the design and construction of chemical plants, there is often a significant gap between the demands for the data and their availability. This study have built and compared two models of partial least squares(PLS) and support vector machine(SVM) to predict the experimental flash points of 893 organic compounds out of DIPPR 801. As the independent variables of the models, 65 functional groups were chosen based on the group contribution method that was oriented from the assumption that each fragment of a molecule contributes a certain amount to the value of its physical property, and the logarithm of molecular weight was added. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, an optimization technique should be used to get three parameters of SVM model. This work adopted particle swarm optimization that is one of heuristic optimization methods. As the selection of training data can affect the prediction performance, 100 data sets of randomly selected data were generated and tested. The PLS and SVM results of the average absolute errors for the whole data range from 13.86 K to 14.55 K and 7.44 K to 10.26 K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

Implementation of Face Recognition Pipeline Model using Caffe (Caffe를 이용한 얼굴 인식 파이프라인 모델 구현)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.430-437
    • /
    • 2020
  • The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.

Implementation and Performance Evaluation of Pavilion Management Service including Availability Prediction based on SVM Model (SVM 모델 기반 가용성 예측 기능을 가진 야외마루 관리 서비스 구현 및 성능 평가)

  • Rijayanti, Rita;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.766-773
    • /
    • 2021
  • This paper presents an implementation result and performance evaluation of pavilion management services that does not only provide real-time status of the pavilion in the forest but also prediction services through machine learning. The developed hardware prototype detects whether the pavilion is occupied using a motion detection sensor and then sends it to a cloud database along with location information, date and time, temperature, and humidity data. The real-time usage status of the collected data is provided to the user's mobile application. The performance evaluation confirms that the average response time from the hardware module to the applications was 1.9 seconds. The accuracy was 99%. In addition, we implemented a pavilion availability prediction service that applied a machine learning-based SVM (Support Vector Model) model to collected data and provided it through mobile and web applications.

The Hybrid Model using SVM and Decision Tree for Intrusion Detection (SVM과 의사결정트리를 이용한 혼합형 침입탐지 모델)

  • Um, Nam-Kyoung;Woo, Sung-Hee;Lee, Sang-Ho
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.1-6
    • /
    • 2007
  • In order to operate a secure network, it is very important for the network to raise positive detection as well as lower negative detection for reducing the damage from network intrusion. By using SVM on the intrusion detection field, we expect to improve real-time detection of intrusion data. However, due to classification based on calculating values after having expressed input data in vector space by SVM, continuous data type can not be used as any input data. Therefore, we present the hybrid model between SVM and decision tree method to make up for the weak point. Accordingly, we see that intrusion detection rate, F-P error rate, F-N error rate are improved as 5.6%, 0.16%, 0.82%, respectively.

A study on the optimum cutter spacing ratio according to penetration depth using decision tree-based and SVM regressions (의사결정나무 기반 회귀분석과 SVM 회귀분석을 이용한 커터 관입깊이에 따른 최적 커터간격 비 연구)

  • Lee, Gi-Jun;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • Cutter cutting tests for the cutter placement in the cutter head are being conducted through various studies. Although the cutter spacing at the minimum specific energy is mainly reflected in the cutter head design, since the optimum cutter spacing at the same cutter penetration depth varies depending on the rock conditions, studies on deciding the optimum cutter spacing should be actively conducted. The machine learning techniques such as the decision tree-based regression model and the SVM regression model were applied to predict the optimum cutter spacing ratio for the nonlinear relationship between cutter penetration depth and cutter spacing. Since the decision tree-based methods are greatly influenced by the number of data, SVM regression predicted optimum cutter spacing ratio according to the penetration depth more accurately and it is judged that the SVM regression will be effectively used to decide the cutter spacing when designing the cutter head if a large amount of data of the optimum cutter spacing ratio according to the penetration depth is accumulated.

Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment (빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델)

  • Kim, Young Soo;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.600-608
    • /
    • 2017
  • Recently data growth rates are growing exponentially according to the rapid expansion of internet. Since users need some of all the information, they carry a heavy workload for examination and discovery of the necessary contents. Therefore information retrieval must provide hierarchical class information and the priority of examination through the evaluation of similarity on query and documents. In this paper we propose an Multi-class support vector machines model based clustering for hierarchical document categorization that make semantic search possible considering the word co-occurrence measures. A combination of hierarchical document categorization and SVM classifier gives high performance for analytical classification of web documents that increase exponentially according to extension of document hierarchy. More information retrieval systems are expected to use our proposed model in their developments and can perform a accurate and rapid information retrieval service.

Intrusion Detection System Based on Multi-Class SVM (다중 클래스 SVM기반의 침입탐지 시스템)

  • Lee Hansung;Song Jiyoung;Kim Eunyoung;Lee Chulho;Park Daihee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, we propose a new intrusion detection model, which keeps advantages of existing misuse detection model and anomaly detection model and resolves their problems. This new intrusion detection system, named to MMIDS, was designed to satisfy all the following requirements : 1) Fast detection of new types of attack unknown to the system; 2) Provision of detail information about the detected types of attack; 3) cost-effective maintenance due to fast and efficient learning and update; 4) incrementality and scalability of system. The fast and efficient training and updating faculties of proposed novel multi-class SVM which is a core component of MMIDS provide cost-effective maintenance of intrusion detection system. According to the experimental results, our method can provide superior performance in separating similar patterns and detailed separation capability of MMIDS is relatively good.