• 제목/요약/키워드: SVM 모델

검색결과 398건 처리시간 0.028초

이전 문장 자질과 다음 발화의 후보 화행을 이용한 한국어 화행 분석 (Korean Speech Act Tagging using Previous Sentence Features and Following Candidate Speech Acts)

  • 김세종;이용훈;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권6호
    • /
    • pp.374-385
    • /
    • 2008
  • 화행 분석이란 자연언어로 된 발화를 통해서 나타나는 화자의 의도를 인식하는 것으로 대화를 처리하는 여러 응용 분야에서 중요하게 요구되는 과정이다. 기존의 연구에서는 이전 발화의 화행과 현재 발화의 문장 자질을 사용하여 규칙 기반 및 통계 기반의 연구가 진행되었다. 하지만 본 논문에서는 현재 발화 이후의 후보 화행을 추정하여 이를 현재 발화의 화행을 결정하는데 사용함으로써 기존의 연구와 차별화를 두었으며, 실제로 기존 방법보다. 3.65%의 성능 향상을 보인 95.27%의 정확도(accuracy)를 보였다. 또한 이전 발화의 화행 정보뿐만 아니라 이전 화행을 결정하는데 사용했던 문장 자질을 현재 발화의 화행 결정에 추가적으로 사용함으로써 이전 발화의 화행 결정을 통해 소실된 정보들의 활용을 최대화하였다. 마지막으로 화행의 종류에 따라 그에 알맞은 확률 모델을 단계별로 적용하여 최종적으로 97.97%의 정확도를 얻었다.

기계학습 기반 경쟁자 자동추출 방법 (Competitor Extraction based on Machine Learning Methods)

  • 이충희;김현진;류법모;김현기;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.107-112
    • /
    • 2012
  • 본 논문은 일반 텍스트에 나타나는 경쟁 관계에 있는 고유명사들을 경쟁자로 자동 추출하는 방법에 대한 것으로, 규칙 기반 방법과 기계 학습 기반 방법을 모두 제안하고 비교하였다. 제안한 시스템은 뉴스 기사를 대상으로 하였고, 문장에 경쟁관계를 나타내는 명확한 정보가 있는 경우에만 추출하는 것을 목표로 하였다. 규칙기반 경쟁어 추출 시스템은 2개의 고유명사가 경쟁관계임을 나타내는 단서단어에 기반해서 경쟁어를 추출하는 시스템이며, 경쟁표현 단서단어는 620개가 수집되어 사용됐다. 기계학습 기반 경쟁어 추출시스템은 경쟁어 추출을 경쟁어 후보에 대한 경쟁여부의 바이너리 분류 문제로 접근하였다. 분류 알고리즘은 Support Vector Machines을 사용하였고, 경쟁어 주변 문맥 정보를 대표할 수 있는 언어 독립적 5개 자질에 기반해서 모델을 학습하였다. 성능평가를 위해서 이슈화되고 있는 핫키워드 54개에 대해서 623개의 경쟁어를 뉴스 기사로부터 수집해서 평가셋을 구축하였다. 비교 평가를 위해서 기준시스템으로 연관어에 기반해서 경쟁어를 추출하는 시스템을 구현하였고, Recall/Precision/F1 성능으로 0.119/0.214/0.153을 얻었다. 제안 시스템의 실험 결과로 규칙기반 시스템은 0.793/0.207/0.328 성능을 보였고, 기계 학습기반 시스템은 0.578/0.730/0.645 성능을 보였다. Recall 성능은 규칙기반 시스템이 0.793으로 가장 좋았고, 기준시스템에 비해서 67.4%의 성능 향상이 있었다. Precision과 F1 성능은 기계학습기반 시스템이 0.730과 0.645로 가장 좋았고, 기준시스템에 비해서 각각 61.6%, 49.2%의 성능향상이 있었다. 기준시스템에 비해서 제안한 시스템이 Recall, Precision, F1 성능이 모두 대폭적으로 향상되었으므로 제안한 방법이 효과적임을 알 수 있다.

  • PDF

감정어휘 평가사전과 의미마디 연산을 이용한 영화평 등급화 시스템 (Grading System of Movie Review through the Use of An Appraisal Dictionary and Computation of Semantic Segments)

  • 고민수;신효필
    • 인지과학
    • /
    • 제21권4호
    • /
    • pp.669-696
    • /
    • 2010
  • 본 논문은 한 문서의 전체 의미는 각 부분의미의 합성이라는 관점에서 미리 반자동으로 구축된 감정어휘 평가사전을 기반으로 한 시스템을 제안한다. 인간의 의사 결정 과정과 유사한 방식으로 의사 결정 과정을 모델링하려는 노력으로써 본 ARSSA 시스템은 개별 리뷰의 의미값 연산과 자료 분류를 통해 감정 표현이 나타난 영화평 리뷰의 자동 등급화에 대한 연구를 수행한다. 이는 {'평점' : '리뷰'} 이항구조로 이루어진 현재의 평점 부여 형식에서 발생하는 두 변항의 불연속성 문제를 해결해보려는 목적을 가진다. 이는 어휘 의미 합성 과정에서 반영된 추상적 의미들의 합성 함수를 통해 실현될 수 있다. 시스템의 성능 실험에서 네이버 무비에서 확보한 1000개의 리뷰에 대한 10-fold 교차 검증 실험이 수행되었다. 이 실험은 기존에 부여된 평점과 비교하여 감정어휘 평가사전을 이용하였을 때 85%의 F1 Score를 보였다.

  • PDF

역삼투압 해수담수화(SWRO) 플랜트에서 독립변수의 다중공선성을 고려한 예측모델에 관한 연구 (A Study on the Prediction Model Considering the Multicollinearity of Independent Variables in the Seawater Reverse Osmosis)

  • 한인섭;윤연아;장태우;김용수
    • 품질경영학회지
    • /
    • 제48권1호
    • /
    • pp.171-186
    • /
    • 2020
  • Purpose: The purpose of this study is conducting of predictive models that considered multicollinearity of independent variables in order to carry out more efficient and reliable predictions about differential pressure in seawater reverse osmosis. Methods: The main variables of each RO system are extracted through factor analysis. Common variables are derived through comparison of RO system # 1 and RO system # 2. In order to carry out the prediction modeling about the differential pressure, which is the target variable, we constructed the prediction model reflecting the regression analysis, the artificial neural network, and the support vector machine in R package, and figured out the superiority of the model by comparing RMSE. Results: The number of factors extracted from factor analysis of RO system #1 and RO system #2 is same. And the value of variability(% Var) increased as step proceeds according to the analysis procedure. As a result of deriving the average RMSE of the models, the overall prediction of the SVM was superior to the other models. Conclusion: This study is meaningful in that it has been conducting a demonstration study of considering the multicollinearity of independent variables. Before establishing a predictive model for a target variable, it would be more accurate predictive model if the relevant variables are derived and reflected.

빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계 (Design of Anomaly Detection System Based on Big Data in Internet of Things)

  • 나성일;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.377-383
    • /
    • 2018
  • 사물인터넷(IoT) 서비스는 스마트 환경이 발전하면서 다양한 데이터를 생산하고 있다. 이 데이터는 사용자의 상황을 판단하는 중요한 데이터로 사용된다. 그렇기 때문에 센서의 이상 상태를 실시간으로 모니터링하고 이상 데이터를 탐지하는 것이 중요하다. 하지만 데이터 구조와 프로토콜이 다양하기 때문에 표준화된 데이터 구조로 변환하는 과정이 필요하다. 그럼으로써 데이터의 품질을 보장하고 정확한 분석을 통해 서비스의 품질까지 좋아지는 효과를 기대할 수 있다. 본 논문은 수집된 센서의 이상탐지를 위해 빅데이터 기반의 이상탐지 시스템을 제안한다. 제안한 시스템은 이상탐지를 위해 데이터 표준화 전처리와 시계열 기반의 이상탐지가 우수한 SVM(Support Vector Machine) 모델을 적용하였다. 실험에서는 전처리와 전처리되지 않은 데이터를 각각 학습시키고 비교하였다. 그 결과, 전처리된 데이터는 이상 장애를 정확히 탐지하고 예측하였다.

실시간 공정 모니터링을 통한 제품 품질 예측 모델 개발 (A Product Quality Prediction Model Using Real-Time Process Monitoring in Manufacturing Supply Chain)

  • 오영광;박해승;유아름;김남훈;김영학;김동철;최진욱;윤성호;양희종
    • 대한산업공학회지
    • /
    • 제39권4호
    • /
    • pp.271-277
    • /
    • 2013
  • In spite of the emphasis on quality control in auto-industry, most of subcontract enterprises still lack a systematic in-process quality monitoring system for predicting the product/part quality for their customers. While their manufacturing processes have been getting automated and computer-controlled ever, there still exist many uncertain parameters and the process controls still rely on empirical works by a few skilled operators and quality experts. In this paper, a real-time product quality monitoring system for auto-manufacturing industry is presented to provide the systematic method of predicting product qualities from real-time production data. The proposed framework consists of a product quality ontology model for complex manufacturing supply chain environments, and a real-time quality prediction tool using support vector machine algorithm that enables the quality monitoring system to classify the product quality patterns from the in-process production data. A door trim production example is illustrated to verify the proposed quality prediction model.

지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발 (Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm)

  • 정영준;이종혁;이상익;오부영;;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형 (Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert)

  • 최원근;김흥섭;고봉진
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.111-118
    • /
    • 2023
  • 스마트팩토리의 구축을 위해서는 제조환경에서 여러 센서 및 기기 등을 연결하여 데이터를 수집하고, 데이터 분석을 통해 생산설비 등의 장애를 진단하거나 예측하여야 한다. 본 논문에서는 공작기계에서 제품을 가공하기 위해 사용되는 절삭용 인서트의 잔여 유효 수명을 예측하기 위해 진동 신호를 기반으로 한 가중화 k-최근접이웃(Weighted k-NN) 알고리즘, 의사결정나무(Decision Tree), 서포트벡터회귀(SVM), XGBoost, 랜덤포레스트(Random forest), 1차원 합성곱신경망(1D-CNN), 그리고 진동 신호를 FFT한 주파수 스펙트럼에 대해 알아보았다. 연구결과, 주파수 스펙트럼으로는 잔여 유효수명의 정확한 예측에 대해서는 신빙성있는 기준을 제공하지 못한다는 것을 알수 있었고, 예측 모델 중 가중화 k-최근접이웃 알고리즘이 MAE가 0.0013, MSE가 0.004, RMSE가 0.0192로 가장 우수한 성능을 나타내었다. 이는 가중화 k-최근접이웃 알고리즘에 의해 예측되는 인서트의 잔여 유효 수명의 오차가 0.001초 수준으로 평가되어, 실제 산업현장에 적용이 가능한 수준으로 사료된다.

BLE 신호 기반 기계학습을 이용한 재실 여부 결정 방법 (BLE Signals-based Machine Learning for Determining Indoor Presence)

  • 김성창;김진호
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1855-1862
    • /
    • 2022
  • Beacon을 이용한 실내 재실 여부 결정 및 실내 측위 기술을 통해 다양한 실내 위치기반 서비스를 제공할 수 있다. 하지만, Beacon이 송출하는 BLE 신호는 다중 경로 페이딩 등의 문제로 인해 RSSI 값이 불안정하기 때문에 재실 여부 결정의 정확도를 보장하기 어렵다. 본 논문에서는 다양한 상황에서도 정확성을 보장하기 위해 강의실의 문이 열린 상태에서 데이터를 수집하였다. 수집된 데이터를 기반으로 신호의 특성을 고려한 재실 여부 결정 방법을 제안한다. 제안된 방법은 SVM 모델을 사용하며, 수신 신호 강도만을 사용한 결과에 비해 약 10% 정확도 향상을 보였다. 이 방법은 수신기 하나만으로도 재실 여부를 정확하게 판단할 수 있다는 장점이 있다. 제안된 방법을 통해 정확도 높은 염가형 재실 여부 결정 시스템을 구현할 수 있을 것으로 기대된다.

머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로 (A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university)

  • 김소현;조성현
    • 대한통합의학회지
    • /
    • 제12권2호
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.