• 제목/요약/키워드: SVM (Support Vector Method)

검색결과 658건 처리시간 0.033초

SVM을 이용한 음성 사상체질 분류 알고리즘 (Voice Classification Algorithm for Sasang Constitution Using Support Vector Machine)

  • 강재환;도준형;김종열
    • 사상체질의학회지
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2010
  • 1. Objectives: Voice diagnosis has been used to classify individuals into the Sasang constitution in SCM(Sasang Constitution Medicine) and to recognize his/her health condition in TKM(Traditional Korean Medicine). In this paper, we purposed a new speech classification algorithm for Sasang constitution. 2. Methods: This algorithm is based on the SVM(Support Vector Machine) technique, which is a classification method to classify two distinct groups by finding voluntary nonlinear boundary in vector space. It showed high performance in classification with a few numbers of trained data set. We designed for this algorithm using 3 SVM classifiers to classify into 4 groups, which are composed of 3 constitutional groups and additional indecision group. 3. Results: For the optimal performance, we found that 32.2% of the voice data were classified into three constitutional groups and 79.8% out of them were grouped correctly. 4. Conclusions: This new classification method including indecision group appears efficient compared to the standard classification algorithm which classifies only into 3 constitutional groups. We find that more thorough investigation on the voice features is required to improve the classification efficiency into Sasang constitution.

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

Power System Voltage Stability Classification Using Interior Point Method Based Support Vector Machine(IPMSVM)

  • Song, Hwa-Chang;Dosano, Rodel D.;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.238-243
    • /
    • 2009
  • This paper present same thodology for the classification of power system voltage stability, the trajectory of which to instability is monotonic, using an interior point method based support vector machine(IPMSVM). The SVM based voltage stability classifier canp rovide real-time stability identification only using the local measurement data, without the topological information conventionally used.

한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법 (A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography)

  • 권주원;강호경;노용만;김성민
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

On Approximate Prediction Intervals for Support Vector Machine Regression

  • 황창하;석경하;조대현
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.65-75
    • /
    • 2002
  • The support vector machine (SVM), first developed by Vapnik and his group at AT &T Bell Laboratories, is being used as a new technique for regression and classification problems. In this paper we present an approach to estimating approximate prediction intervals for SVM regression based on posterior predictive densities. Furthermore, the method is illustrated with a data example.

  • PDF

A Hierarchical Clustering Method Based on SVM for Real-time Gas Mixture Classification

  • Kim, Guk-Hee;Kim, Young-Wung;Lee, Sang-Jin;Jeon, Gi-Joon
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.716-721
    • /
    • 2010
  • In this work we address the use of support vector machine (SVM) in the multi-class gas classification system. The objective is to classify single gases and their mixture with a semiconductor-type electronic nose. The SVM has some typical multi-class classification models; One vs. One (OVO) and One vs. All (OVA). However, studies on those models show weaknesses on calculation time, decision time and the reject region. We propose a hierarchical clustering method (HCM) based on the SVM for real-time gas mixture classification. Experimental results show that the proposed method has better performance than the typical multi-class systems based on the SVM, and that the proposed method can classify single gases and their mixture easily and fast in the embedded system compared with BP-MLP and Fuzzy ARTMAP.

SVM을 이용한 웨이블릿 기반 프로파일 분류에 관한 연구 (A Wavelet-based Profile Classification using Support Vector Machine)

  • 김성준
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.718-723
    • /
    • 2008
  • 베어링은 각종 설비에서 활용되는 중요한 기계요소 중 하나이다. 설비고장의 상당수는 베어링의 결함이나 파손에 기인하고 있다. 따라서 베어링에 대한 온라인모니터링기술은 설비의 정지를 예방하고 손실을 줄이는 데 필수적이다. 본 논문은 진동 신호를 이용하여 베어링의 상태를 예측하기 위한 온라인모니터링에 대해 연구한다. 프로파일로 주어지는 진동신호는 이산 웨이블릿 변환을 통해 분석되고, 분해수준별 웨이블릿 계수로부터 얻은 통계적 특징 중 유의한 것을 선별하고자 분산분석 (ANOVA)을 이용한다. 선별된 특징벡터는 Support Vector Machine (SVM)의 입력이 되는 데, 본 논문에서는 다중클래스 분류문제를 다루기 위한 계층적 SVM 트리를 제안한다. 수치실험 결과, 제안된 방법은 베어링의 결함을 분류하는 데 우수한 성능을 갖는 것으로 나타났다.

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

다중 바이오 인증에서 특징 융합과 결정 융합의 결합 (Combining Feature Fusion and Decision Fusion in Multimodal Biometric Authentication)

  • 이경희
    • 정보보호학회논문지
    • /
    • 제20권5호
    • /
    • pp.133-138
    • /
    • 2010
  • 본 논문은 얼굴과 음성 정보를 사용한 다중 바이오 인증에서, 특정 단계의 융합과 결정 단계의 융합을 동시에 수행하는 다단계 융합 방법을 제안한다. 얼굴과 음성 특징을 1차 융합한 얼굴 음성 융합특징에 대해 Support Vector Machines(SVM)을 생성한 후, 이 융합특징 SVM 인증기의 결정과 얼굴 SVM 인증기의 결정, 음성 SVM 인증기의 결정들을 다시 2차 융합하여 최종 인증 여부를 결정한다. XM2VTS 멀티모달 데이터베이스를 사용하여 특징 단계 융합, 결정 단계 융합, 다단계 융합 인증을 비교 실험한 결과, 제안한 다단계 융합에 의한 인증이 가장 우수한 성능을 보였다.

그룹변수를 포함하는 불균형 자료의 분류분석을 위한 서포트 벡터 머신 (Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables)

  • 김은경;전명식;방성완
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.961-975
    • /
    • 2016
  • H-SVM은 입력변수들이 그룹화 되어 있는 경우 분류함수의 추정에서 그룹 및 그룹 내의 변수선택을 동시에 할 수 있는 방법론이다. 그러나 H-SVM은 입력변수들의 중요도에 상관없이 모든 변수들을 동일하게 축소 추정하기 때문에 추정의 효율성이 감소될 수 있다. 또한, 집단별 개체수가 상이한 불균형 자료의 분류분석에서는 분류함수가 편향되어 추정되므로 소수집단의 예측력이 하락할 수 있다. 이러한 문제점들을 보완하기 위해 본 논문에서는 적응적 조율모수를 사용하여 변수선택의 성능을 개선하고 집단별 오분류 비용을 차등적으로 부여하는 WAH-SVM을 제안하였다. 또한, 모의실험과 실제자료 분석을 통하여 제안한 모형과 기존 방법론들의 성능 비교하였으며, 제안한 모형의 유용성과 활용 가능성 확인하였다.