• Title/Summary/Keyword: SVI

Search Result 95, Processing Time 0.019 seconds

An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge (CSOs처리를 위한 응집침전시스템에서 슬러지 반송에 의한 고형물 처리효율평가)

  • Ha, Sung-Ryong;Lee, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.

Several Factors Affecting Seed Emergence, Seedling Quality and Survival of Potted Seedling on Ligularia fischeri (곰취 종자의 발아, 유묘특성 및 분화묘 활착에 미치는 몇 가지 요인)

  • Lee, Ki Cheol;Lee, Su Gwang;Lee, Uk;Noh, Hee Sun;Lee, Jeong Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • A study was conducted to evaluate the effect of collected region(Bongpyeong in Gangwon, 690 m, Mt. Halla in Jeju, 1,085 m), pre-treatment (stratification, soaked in distilled water or $GA_3$) and shading (control, 50%, 80%) on seed emergence and seedlings growth of Ligularia fischeri. The result showed that seed emergence (%) of L. fischeri were 6.9~75.5% (Gangwon : 6.9~32.8%, Halla : 22.2~75.5%). Maximum seed emergence (%) of 32.8 (Gangwon) and 75.5 (Halla) were achieved for seeds were stratified, soaked in distilled water, and under non-shading for L. fischeri (Gangwon), whereas seeds were stratified, soaked in $GA_3$ 100 ppm, and under 80% shading for L. fischeri (Halla). In this study, the best seedling vigor index (SVI) of L. fischeri (Gangwon) and L. fischeri (Halla) were obtained when seeds were stratified, soaked in distilled water, and under 50% shading. The survival rate of potted seedlings for L. fischeri (Halla) were 100% of all shading conditions, but there were decreased by 77.8%, 61.1%, 55.6%, as an increasing shading rate (con, 50%, 80%) for L. fischeri (Gangwon). Therefore, good seedlings were obtained when seed (Mt. Halla) of L. fischeri were stratified, soaked in distilled water, and under 50% shading, and then seedlings were transferred in pot.

Economic Design of Activated Sludge System at the Optimum Sludge Concentration (슬러지 농도 최적화에 따른 합리적인 활성슬러지공정 설계방안 연구)

  • Lee, Byung Joon;Choi, Yun Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.483-490
    • /
    • 2014
  • The design procedures for a biological reactor and a secondary settling tank (SST) of an activated sludge system are based on the steady state design method (Ekama et al., 1986; WRC, 1984) and the 1-D flux theory design method (Ekama et al., 1997), respectively. This study combined both of the design procedures, to determine the optimum sludge concentration in the reactor and the best design with the lowest cost. The best design of the reactor volume and the SST diameter at the optimum sludge concentration were specified with varying wastewater and sludge characteristics, temperature, sludge retention time (SRT) and peak flow rate. The effects of the influent wastewater characteristics, such as substrate concentration and unbiodegradable particulate fraction, were found to be considerable, but the effect of unbiodegradable soluble fraction was to be negligible. The effects of sludge settling characteristics, were also significant. SRT, as an operating parameter, was found to be an important factor for determining the optimum sludge concentration. However, the effect of temperature was found to be small. Furthermore, for designing a large scale wastewater treatment plant, the number of reactors or SSTs could be estimated, by dividing the total reactor volume or SST area. The new combined design procedure, proposed in this research, will be able to allow engineers to provide the best design of an activated sludge system with the lowest cost.

The Optimum Design of Suspended Growth Systems (부유성 미생물을 이용한 생물처리법의 최적 설계)

  • Lee, Jeoung-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1011-1019
    • /
    • 2000
  • The purpose of this study is to examine the basis of design condition of existing treatment processes, namely, Extended Aeration Process, Conventional Activated Process, High Rate Aeration Process and Modified Aeration Process, by clarifying the correlations of influent wastewater concentration, hydraulic retention time, food-to-microorganism ratio and sedimentation of sludge, as well as to ascertain the feasibility of design, regardless of the existing design condition. In particular, this study made a priority investigation of hydraulic retention time and sludge sedimentation, because sludge sedimentation is the main factor$^{1)}$ which determines the operating conditions of existing treatment processes. Therefore, it is generally known that in case exceeds the sphere of design presented for each treatment, sludge bulking may occur. The results of Lesperance's test$^{1)}$, which formed the basis of design, showed the sphere of loading without security of sludge sedimentation, as in Fig. 1. The reason for sludge bulking in a certain condition, as above, is due to failure in application of optimum loading corresponding to each retention time by employing a few operating condition, which proved to be consecutively workable after years of trials and failures by Lesperance, for test conditions. However, the result of this test showed that in case of proper maintenance of loading. sludge sedimentation can be ensured under 120 SVI. Therefore, this study suggested hydraulic retention time and its corresponding optimum loading, and identified the hydraulic retention time as a determinant of sludge sedimentation. And. on the basis of these findings, this study suggested the feasiblity of UHR(Ultra High Rate), a new operating process, exceeding several times the applicable loading value of High Rate Aeration Process under one hour retention time which has not yet applied to the existing treatment processes.

  • PDF

The Effect of Media Application in Aeration Tank for Aerobic Treatment of Swine Slurry (돈분뇨슬러리 폭기시 담체 설치효과)

  • Jeong, Kwang-Hwa;Choi, S.H.;Kwag, J.H.;Kim, J.H.;Jeong, E,S.;Jeong, M,S.;Kang, H.S.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • This study was performed to evaluate the removal effects of nutritive salts and organic pollutants in experimental aeration reactor for treatment of piggery slurry. In this study, three types of reactors were manufactured and operated. The fibrous media was equipped in one of three reactors. Another reactor was equipped with the siliceous media and the other reactor used as a control was equipped with typical aeration system only. Treatment efficacy of three types of reactors were evaluated according to the pollutants removal rate of the piggery slurry. The results obtained in this study are as follows : 1) In the reactor containing fibrous media, the removal efficiency of BOD, T-N and T-P was 11%, 13.9% and 21.2%, respectively. 2) In the reactor containing siliceous media, the removal efficiency of BOD, T-N and T-P was 6.9%, 25.3% and 47.8%, respectively. 3) In the reactor not containing media, the removal efficiency of BOD. T-N and T-P was 6.1%, 8.1.% and 23.6%, respectively. 4) Sludge accumulation in the reactor equipped with filamentous media was lower than that of other experimental reactors.