본 논문은 MPEG4 SNHC의 얼굴 모델 인코딩을 구현하기 위하여 연속된 2차원 영상으로부터 얼굴영역을 검출하고, 얼굴의 특징데이터들을 추출한 후, 얼굴의 3차원 모양 및 움직임 정보를 복원하는 알고리즘과 결과를 제시한다. 얼굴 영역 검출을 위해서 영상의 거리, 피부색상, 움직임 색상정보등을 융합시킨 멀티모달합성의 방법이 사용되었다. 결정된 얼굴영역에서는 MPEG4의 FDP(Face Definition Parameter) 에서 제시된 특징점 위치중 23개의 주요 얼굴 특징점을 추출하며 추출성능을 향상시키기 위하여 GSCD(Generalized Skin Color Distribution), BWCD(Black and White Color Distribution)등의 움직임색상 변환기법과 형태연산 방법이 제시되었다. 추출된 2차원 얼팔 특징점들로부터 얼굴의 3차원 모양, 움직임 정보를 복원하기 위하여 준원근 카메라 모델을 적용하여 SVD(Singular Value Decomposition)에 의한 인수분해연산을 수행하였다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 복원된 얼굴의 움직임 정보는 MPEG4 FAP(Face Animation Parameter)로 변환된 후, 인터넷상에서 확인이 가능한 가상얼굴모델에 인코딩되어 실제 얼굴파 일치하는 모습을 확인하였다.
전기 임피던스 단층촬영 기법은 도메인의 표면에 부착된 전극들을 통해 주입된 전류와 측정된 전압 데이터를 기반으로, 미지의 도전율 분포를 복원하는 비파괴 기술이다. 이 논문에서는 전기 임피던스 단층촬영법에서 일반적 Tikhonov 조정을 갖는 역문제를 풀고 도전율 분포를 복원하기 위해 절단된 특이값 분해 기반의 역문제 해법을 제안하였다. 역문제 계산시간을 줄이기 위해 일반 조정행렬을 역행렬 항목에서 분리시키고 절단된 특이값 분해 방법을 적용하였다. 제안한 방법의 성능을 검증하기 위해 모의실험과 팬텀실험을 수행하고 복원결과를 비교하였다.
There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.
본 논문에서는 변화가 심한 음원파형을 추정하는 새로운 순차처리 알고리듬을 제안한다. 먼저, 1) 기존의 순차처리 분석법중 대표적인 분석법인 RLS(recursive least square)의 문제점들을 검토하고, 2) 이를 개선하기 위해서 관측행렬(observation matrix)을 최적차수의 SVD(reduced-rank singular value decomposition)로 재구성하고, 3) 이에 견실개념(robustness concept)을 적용해서 최적의 성도변수(vocal tract parameter)를 찾아내고 역필터를 적용해서 음원(voice source)을 효과적으로 구분해낸다. 본 논문에서 제안된 방법으로 음원을 추정할 경우, 변화가 심한 음원파형을 잘 추정할 수 있으며, 음원의 특성을 구분해낸 성도 파라미터도 효과적으로 추정할 수 있다. 본 연구내용은 음성합성에서 자연성 개선 및 개인성 구현을 위해서 필수적이며, 다양한 형태의 음성을 표현하기 위해 사용되어질 수 있다. 또한, 음성코딩, 화자인식, 음성인식에서도 사용되어질 수 있다.
In this paper, a new method to design sliding surfaces using eigenstructure assignment is proposed. Most conventional methods for constructing the surfaces require special form like canonical or regular canonical form of system matrices. But the proposed method can be applied to arbitrary system matrices. Futhermore, the surface matrix, C can be decided for the matrix multiplication, CB to have a designated form. SVD is used to decide desirable eigenvectors explicitly. To verify the proposed algorithm, a sliding mode controller for a multivariable system with matched uncertainty is constructed. The controller is designed to guarantee minimum approach velocity to the sliding surface.
International Journal of Computer Science & Network Security
/
제21권3호
/
pp.31-36
/
2021
RNA sequencing (RNA-Seq) is a technology that facilitates transcriptome analysis using next-generation sequencing (NSG) tools. Information on the quantity and sequences of RNA is vital to relate our genomes to functional protein expression. RNA-Seq data are characterized as being high-dimensional in that the number of variables (i.e., transcripts) far exceeds the number of observations (e.g., experiments). Given the wide range of dimensionality reduction techniques, it is not clear which is best for RNA-Seq data analysis. In this paper, we study the effect of three dimensionality reduction techniques to improve the classification of the RNA-Seq dataset. In particular, we use PCA, SVD, and SOM to obtain a reduced feature space. We built nine classification models for a cancer dataset and compared their performance. Our experimental results indicate that better classification performance is obtained with PCA and SOM. Overall, the combinations PCA+KNN, SOM+RF, and SOM+KNN produce preferred results.
Triplet 카메라 렌즈계(f'=50mm, f/3.5)를 통하여 고유값의 중간값은 최적의 감쇠 계수임과, 정규 방정식을 풀 때 SVD 직교화 방법을 적용하면 불량 조건을 제거하여 계산의 정확도를 높일 수 있어서 merit 함수는 최소값에 안정하면서도 빠르게 수렴할 수 있다는 것을 조사하였다. 양호 조건인 triplet 카메라 렌즈계에서 SVD 직교화 방법을 적용한 DLS 법에서 얻은 최소 merit 함수는 가우스 소거법에서 얻은 최소 merit 함수의 97.86%로서 크게 개선되지는 못하였다. 따라서 SVD 직교화 방법을 적용한 DLS 법이 가우스 소거법을 적용한 DLS 법보다 감쇠 계수 적용에 대한 안정성과 수렴속도가 좋으며, 최적화 방법에 적절한 감쇠 계수를 적용시켜주면 최적화 과정의 수렴 속도가 개선됨을 알 수 있었다.
본 논문은 다단계 불법유통 추적을 위하여 배포단계 마다 포렌식마크를 삽입하고 불법 유통시 삽입된 포렌식마크를 검출하여 유통경로 추적이 가능하도록 하는 방식을 제안한다. 단계마다 저작권 및 사용자 정보를 포함한 포렌식마크를 삽입해야 하므로 대용량의 정보 삽입이 필요하고, 또 단계마다 삽입된 정보들 사이에 신호간섭이 발생하지 않도록 하여야 정확한 검출이 가능하다. 제안방식은 포렌식마크로부터 디지털 홀로그램을 생성하여 DWT-SVD 도메인에 삽입하는 방식으로 다단계 불법유통 추적이 가능하도록 구성하였다. 대용량 정보 삽입을 구현하기 위하여 포렌식마크로부터 비축홀로그램(Off-axis Hologram)을 생성하고 단계별 유통추적이 가능하도록 홀로그램을 DWT(Discrete Wavelet Transform)도메인의 HL, LH, HH band에 삽입하여 신호간섭을 줄였다. 또 SVD(Singular Value Decomposition)를 홀로그램이 삽입된 신호에 적용하여 단계별 검출성능 및 안전성을 향상시켰다. 실험결과 각 단계별로 저작권 정보 및 사용자 정보로 활용이 가능한 128bit의 포렌식마크 삽입이 가능하여 3단계 배포에 총 384bit를 삽입하고 단계별로 정확한 검출이 이루어졌으며 JPEG압축에도 강인한 것으로 나타났다.
센서 네트워크는 애플리케이션 분야에 따라 데이터 특성과 사용자의 요구사항이 다양함에도 불구하고, 현존하는 스트림 데이터 축소 연구는 데이터의 본질적인 특징보다 특정 축소 기법의 성능 향상 측면에 중점을 두고 있다. 이 논문은 계층/분산형 센서 네트워크 구조와 데이터 모델을 소개하고, 선택적으로 축소 기법을 적용하기 위해 데이터 특성과 사용자의 요구에 적합한 다변량 데이터 축소 기법을 비교 평가한다. 다변량 데이터 축소 기법의 성능을 비교 분석하기 위해, 우리는 웨이블릿, HCL(Hierarchical Clustering), SVD(Singular Value Decomposition), 샘플링과 같은 표준화 된 다변량 축소 기법을 이용한다. 실험 데이터는 다차원 시계열 데이터와 로봇 센서 데이터를 사용한다. 실험 결과 SVD와 샘플링 기법이 상대 에러 비율과 수행 성능 측면에서 웨이블릿과 HCL기법에 비해 우수하였다. 특히 각 데이터 축소 기법의 상대 에러 비율은 입력 데이터 특성에 따라 다르기 때문에 선택적으로 데이터 축소 기법을 적용하는 것이 좋은 성능을 보였다. 이 논문은 다차원 센서 데이터가 수집되는 센서 네트워크를 디자인하고 구축하는 응용 분야에 유용하게 활용될 것이다.
Satellite data have an intrinsic problem due to a number of various physical parameters, which can have a similar effect on measured radiance. Most evaluations of satellite performance have relied on comparisons with limited spatial and temporal resolution of ground-based measurements such as soundings and in-situ measurements. In order to overcome this problem, a new way of satellite data evaluation is suggested with statistical tools such as empirical orthogonal function(EOF), and singular value decomposition(SVD). The EOF analyses with OMI and OMI HCHO over northeast Asia show that the spatial pattern show high correlation with population density. This suggests that human activity is a major source of as well as HCHO over this region. However, this analysis is contradictory to the previous finding with GOME HCHO that biogenic activity is the main driving mechanism(Fu et al., 2007). To verify the source of HCHO over this region, we performed the EOF analyses with vegetation and HCHO distribution. The results showed no coherence in the spatial and temporal pattern between two factors. Rather, the additional SVD analysis between $NO_2$ and HCHO shows consistency in spatial and temporal coherence. This outcome suggests that the anthropogenic emission is the main source of HCHO over the region. We speculate that the previous study appears to be due to low temporal and spatial resolution of GOME measurements or uncertainty in model input data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.