• 제목/요약/키워드: SVD(Singular Value Decomposition)

검색결과 220건 처리시간 0.022초

다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원 (Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model)

  • 김상훈
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.563-570
    • /
    • 2002
  • 본 논문은 MPEG4 SNHC의 얼굴 모델 인코딩을 구현하기 위하여 연속된 2차원 영상으로부터 얼굴영역을 검출하고, 얼굴의 특징데이터들을 추출한 후, 얼굴의 3차원 모양 및 움직임 정보를 복원하는 알고리즘과 결과를 제시한다. 얼굴 영역 검출을 위해서 영상의 거리, 피부색상, 움직임 색상정보등을 융합시킨 멀티모달합성의 방법이 사용되었다. 결정된 얼굴영역에서는 MPEG4의 FDP(Face Definition Parameter) 에서 제시된 특징점 위치중 23개의 주요 얼굴 특징점을 추출하며 추출성능을 향상시키기 위하여 GSCD(Generalized Skin Color Distribution), BWCD(Black and White Color Distribution)등의 움직임색상 변환기법과 형태연산 방법이 제시되었다. 추출된 2차원 얼팔 특징점들로부터 얼굴의 3차원 모양, 움직임 정보를 복원하기 위하여 준원근 카메라 모델을 적용하여 SVD(Singular Value Decomposition)에 의한 인수분해연산을 수행하였다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 복원된 얼굴의 움직임 정보는 MPEG4 FAP(Face Animation Parameter)로 변환된 후, 인터넷상에서 확인이 가능한 가상얼굴모델에 인코딩되어 실제 얼굴파 일치하는 모습을 확인하였다.

전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발 (Development of Inverse Solver based on TSVD in Electrical Impedance Tomography)

  • 김봉석;김창일;김경연
    • 전자공학회논문지
    • /
    • 제54권4호
    • /
    • pp.91-98
    • /
    • 2017
  • 전기 임피던스 단층촬영 기법은 도메인의 표면에 부착된 전극들을 통해 주입된 전류와 측정된 전압 데이터를 기반으로, 미지의 도전율 분포를 복원하는 비파괴 기술이다. 이 논문에서는 전기 임피던스 단층촬영법에서 일반적 Tikhonov 조정을 갖는 역문제를 풀고 도전율 분포를 복원하기 위해 절단된 특이값 분해 기반의 역문제 해법을 제안하였다. 역문제 계산시간을 줄이기 위해 일반 조정행렬을 역행렬 항목에서 분리시키고 절단된 특이값 분해 방법을 적용하였다. 제안한 방법의 성능을 검증하기 위해 모의실험과 팬텀실험을 수행하고 복원결과를 비교하였다.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

견실 순차 특이치분해를 이용한 음원추정 (Voice Source Estimation Using Robust Sequential SVD)

  • 홍성훈
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.75-79
    • /
    • 1993
  • 본 논문에서는 변화가 심한 음원파형을 추정하는 새로운 순차처리 알고리듬을 제안한다. 먼저, 1) 기존의 순차처리 분석법중 대표적인 분석법인 RLS(recursive least square)의 문제점들을 검토하고, 2) 이를 개선하기 위해서 관측행렬(observation matrix)을 최적차수의 SVD(reduced-rank singular value decomposition)로 재구성하고, 3) 이에 견실개념(robustness concept)을 적용해서 최적의 성도변수(vocal tract parameter)를 찾아내고 역필터를 적용해서 음원(voice source)을 효과적으로 구분해낸다. 본 논문에서 제안된 방법으로 음원을 추정할 경우, 변화가 심한 음원파형을 잘 추정할 수 있으며, 음원의 특성을 구분해낸 성도 파라미터도 효과적으로 추정할 수 있다. 본 연구내용은 음성합성에서 자연성 개선 및 개인성 구현을 위해서 필수적이며, 다양한 형태의 음성을 표현하기 위해 사용되어질 수 있다. 또한, 음성코딩, 화자인식, 음성인식에서도 사용되어질 수 있다.

  • PDF

고유구조 지정에 의한 슬라이딩 평면 설계와 불확실한 시스템의 슬라이딩 모드 제어 (Sliding Surface Design by Eigenstructure Assignment and Sliding Mode Control of Matched Uncertain Systems)

  • 이태봉;양현석
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.812-817
    • /
    • 2009
  • In this paper, a new method to design sliding surfaces using eigenstructure assignment is proposed. Most conventional methods for constructing the surfaces require special form like canonical or regular canonical form of system matrices. But the proposed method can be applied to arbitrary system matrices. Futhermore, the surface matrix, C can be decided for the matrix multiplication, CB to have a designated form. SVD is used to decide desirable eigenvectors explicitly. To verify the proposed algorithm, a sliding mode controller for a multivariable system with matched uncertainty is constructed. The controller is designed to guarantee minimum approach velocity to the sliding surface.

Dimensionality Reduction of RNA-Seq Data

  • Al-Turaiki, Isra
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.31-36
    • /
    • 2021
  • RNA sequencing (RNA-Seq) is a technology that facilitates transcriptome analysis using next-generation sequencing (NSG) tools. Information on the quantity and sequences of RNA is vital to relate our genomes to functional protein expression. RNA-Seq data are characterized as being high-dimensional in that the number of variables (i.e., transcripts) far exceeds the number of observations (e.g., experiments). Given the wide range of dimensionality reduction techniques, it is not clear which is best for RNA-Seq data analysis. In this paper, we study the effect of three dimensionality reduction techniques to improve the classification of the RNA-Seq dataset. In particular, we use PCA, SVD, and SOM to obtain a reduced feature space. We built nine classification models for a cancer dataset and compared their performance. Our experimental results indicate that better classification performance is obtained with PCA and SOM. Overall, the combinations PCA+KNN, SOM+RF, and SOM+KNN produce preferred results.

카메라 렌즈 설계에서 직교화 방법에 관한 연구 (A study on convergence and stabilization of SVD damped least squares method in the triplet camera lens-system design)

  • 정정복;이원진;김경찬
    • 한국안광학회지
    • /
    • 제1권1호
    • /
    • pp.29-39
    • /
    • 1996
  • Triplet 카메라 렌즈계(f'=50mm, f/3.5)를 통하여 고유값의 중간값은 최적의 감쇠 계수임과, 정규 방정식을 풀 때 SVD 직교화 방법을 적용하면 불량 조건을 제거하여 계산의 정확도를 높일 수 있어서 merit 함수는 최소값에 안정하면서도 빠르게 수렴할 수 있다는 것을 조사하였다. 양호 조건인 triplet 카메라 렌즈계에서 SVD 직교화 방법을 적용한 DLS 법에서 얻은 최소 merit 함수는 가우스 소거법에서 얻은 최소 merit 함수의 97.86%로서 크게 개선되지는 못하였다. 따라서 SVD 직교화 방법을 적용한 DLS 법이 가우스 소거법을 적용한 DLS 법보다 감쇠 계수 적용에 대한 안정성과 수렴속도가 좋으며, 최적화 방법에 적절한 감쇠 계수를 적용시켜주면 최적화 과정의 수렴 속도가 개선됨을 알 수 있었다.

  • PDF

다단계 유통 추적을 위한 DWT-SVD 기반의 홀로그래피 포렌식마크 (Holographic Forensic Mark based on DWT-SVD for Tracing of the Multilevel Distribution)

  • 이덕;김종원
    • 한국통신학회논문지
    • /
    • 제35권2C호
    • /
    • pp.155-160
    • /
    • 2010
  • 본 논문은 다단계 불법유통 추적을 위하여 배포단계 마다 포렌식마크를 삽입하고 불법 유통시 삽입된 포렌식마크를 검출하여 유통경로 추적이 가능하도록 하는 방식을 제안한다. 단계마다 저작권 및 사용자 정보를 포함한 포렌식마크를 삽입해야 하므로 대용량의 정보 삽입이 필요하고, 또 단계마다 삽입된 정보들 사이에 신호간섭이 발생하지 않도록 하여야 정확한 검출이 가능하다. 제안방식은 포렌식마크로부터 디지털 홀로그램을 생성하여 DWT-SVD 도메인에 삽입하는 방식으로 다단계 불법유통 추적이 가능하도록 구성하였다. 대용량 정보 삽입을 구현하기 위하여 포렌식마크로부터 비축홀로그램(Off-axis Hologram)을 생성하고 단계별 유통추적이 가능하도록 홀로그램을 DWT(Discrete Wavelet Transform)도메인의 HL, LH, HH band에 삽입하여 신호간섭을 줄였다. 또 SVD(Singular Value Decomposition)를 홀로그램이 삽입된 신호에 적용하여 단계별 검출성능 및 안전성을 향상시켰다. 실험결과 각 단계별로 저작권 정보 및 사용자 정보로 활용이 가능한 128bit의 포렌식마크 삽입이 가능하여 3단계 배포에 총 384bit를 삽입하고 단계별로 정확한 검출이 이루어졌으며 JPEG압축에도 강인한 것으로 나타났다.

다변량 스트림 데이터 축소 기법 평가 (Evaluation of Multivariate Stream Data Reduction Techniques)

  • 정훈조;서성보;최경주;박정석;류근호
    • 정보처리학회논문지D
    • /
    • 제13D권7호
    • /
    • pp.889-900
    • /
    • 2006
  • 센서 네트워크는 애플리케이션 분야에 따라 데이터 특성과 사용자의 요구사항이 다양함에도 불구하고, 현존하는 스트림 데이터 축소 연구는 데이터의 본질적인 특징보다 특정 축소 기법의 성능 향상 측면에 중점을 두고 있다. 이 논문은 계층/분산형 센서 네트워크 구조와 데이터 모델을 소개하고, 선택적으로 축소 기법을 적용하기 위해 데이터 특성과 사용자의 요구에 적합한 다변량 데이터 축소 기법을 비교 평가한다. 다변량 데이터 축소 기법의 성능을 비교 분석하기 위해, 우리는 웨이블릿, HCL(Hierarchical Clustering), SVD(Singular Value Decomposition), 샘플링과 같은 표준화 된 다변량 축소 기법을 이용한다. 실험 데이터는 다차원 시계열 데이터와 로봇 센서 데이터를 사용한다. 실험 결과 SVD와 샘플링 기법이 상대 에러 비율과 수행 성능 측면에서 웨이블릿과 HCL기법에 비해 우수하였다. 특히 각 데이터 축소 기법의 상대 에러 비율은 입력 데이터 특성에 따라 다르기 때문에 선택적으로 데이터 축소 기법을 적용하는 것이 좋은 성능을 보였다. 이 논문은 다차원 센서 데이터가 수집되는 센서 네트워크를 디자인하고 구축하는 응용 분야에 유용하게 활용될 것이다.

환경 위성관측자료의 통계분석을 통한 동아시아 대기오염특성 연구 (Analysis of Characteristics of Air Pollution Over Asia with Satellite-derived $NO_2$ and HCHO using Statistical Methods)

  • 백강현;김재환
    • 대기
    • /
    • 제20권4호
    • /
    • pp.495-503
    • /
    • 2010
  • Satellite data have an intrinsic problem due to a number of various physical parameters, which can have a similar effect on measured radiance. Most evaluations of satellite performance have relied on comparisons with limited spatial and temporal resolution of ground-based measurements such as soundings and in-situ measurements. In order to overcome this problem, a new way of satellite data evaluation is suggested with statistical tools such as empirical orthogonal function(EOF), and singular value decomposition(SVD). The EOF analyses with OMI and OMI HCHO over northeast Asia show that the spatial pattern show high correlation with population density. This suggests that human activity is a major source of as well as HCHO over this region. However, this analysis is contradictory to the previous finding with GOME HCHO that biogenic activity is the main driving mechanism(Fu et al., 2007). To verify the source of HCHO over this region, we performed the EOF analyses with vegetation and HCHO distribution. The results showed no coherence in the spatial and temporal pattern between two factors. Rather, the additional SVD analysis between $NO_2$ and HCHO shows consistency in spatial and temporal coherence. This outcome suggests that the anthropogenic emission is the main source of HCHO over the region. We speculate that the previous study appears to be due to low temporal and spatial resolution of GOME measurements or uncertainty in model input data.