• Title/Summary/Keyword: SV30

Search Result 189, Processing Time 0.033 seconds

Comparison of Operator Radiation Exposure Dose undergoing Cardiac Angiography and Cardiac Intervention (심장혈관 중재적 시술의 시술자 피폭 선량에 관한 연구)

  • Kim, Jungsu;Kwon, Soonmu;Jung, Haekyoung;Lee, Bongki;Ryu, Dongryeol;Kwon, Hoseok;Cho, Byungryul
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2016
  • Cardiac angiography(CA) or cardiac intervention(CI) is one of the major examination methods applied to the detection of cardiovascular diseases using X-rays. These CA and CI procedures require radiation exposure to patients and physicians. We evaluated the radiation dose to cardiac operator during the each case of CA and CI procedures. The number of patients is 113 patients in CA and 34 patients in CI. Mean fluoroscopy time, mean cine time, and mean total cumulative dose area product(DAP) in patients during CA and CI was 165.9 sec vs. 1200.0 sec, 30.31 sec vs 107.5 sec, and $37130.3mGy.cm^2$ vs $213312.6mGy.cm^2$, respectively. Mean dose of thyroid, over chest apron and under chest apron in operator during CA and CI was 15.84 uSv vs 89.81 uSv, 20.16 uSv vs 123.20 uSv, and 0.30 uSv vs 2.40 uSv, respectively. Mean effective dose of operator during CI was about 6 times greater than during CA. Also there was significant inter-relationship between fluoroscopy or cine time and effective dose in operator during CA and CI(p=0.001 and p=0.001, respectively).

Evaluation of Radiation Exposure to Nurse on Nuclear Medicine Examination by Use Radioisotope (방사성 동위원소를 이용한 핵의학과 검사에서 병동 간호사의 방사선 피폭선량 평가)

  • Jeong, Jae Hoon;Lee, Chung Wun;You, Yeon Wook;Seo, Yeong Deok;Choi, Ho Yong;Kim, Yun Cheol;Kim, Yong Geun;Won, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Purpose Radiation exposure management has been strictly regulated for the radiation workers, but there are only a few studies on potential risk of radiation exposure to non-radiation workers, especially nurses in a general ward. The present study aimed to estimate the exact total exposure of the nurse in a general ward by close contact with the patient undergoing nuclear medicine examinations. Materials and Methods Radiation exposure rate was determined by using thermoluminescent dosimeter (TLD) and optical simulated luminescence (OSL) in 14 nurses in a general ward from October 2015 to June 2016. External radiation rate was measured immediately after injection and examination at skin surface, and 50 cm and 1 m distance from 50 patients (PET/CT 20 pts; Bone scan 20 pts; Myocardial SPECT 10 pts). After measurement, effective half-life, and total radiation exposure expected in nurses were calculated. Then, expected total exposure was compared with total exposures actually measured in nurses by TLD and OSL. Results Mean and maximum amount of radiation exposure of 14 nurses in a general ward were 0.01 and 0.02 mSv, respectively in each measuring period. External radiation rate after injection at skin surface, 0.5 m and 1 m distance from patients was as following; $376.0{\pm}25.2$, $88.1{\pm}8.2$ and $29.0{\pm}5.8{\mu}Sv/hr$, respectively in PET/CT; $206.7{\pm}56.6$, $23.1{\pm}4.4$ and $10.1{\pm}1.4{\mu}Sv/hr$, respectively in bone scan; $22.5{\pm}2.6$, $2.4{\pm}0.7$ and $0.9{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. After examination, external radiation rate at skin surface, 0.5 m and 1 m distance from patients was decreased as following; $165.3{\pm}22.1$, $38.7{\pm}5.9$ and $12.4{\pm}2.5{\mu}Sv/hr$, respectively in PET/CT; $32.1{\pm}8.7$, $6.2{\pm}1.1$, $2.8{\pm}0.6$, respectively in bone scan; $14.0{\pm}1.2$, $2.1{\pm}0.3$, $0.8{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. Based upon the results, an effective half-life was calculated, and at 30 minutes after examination the time to reach normal dose limit in 'Nuclear Safety Act' was calculated conservatively without considering a half-life. In oder of distance (at skin surface, 0.5 m and 1 m distance from patients), it was 7.9, 34.1 and 106.8 hr, respectively in PET/CT; 40.4, 199.5 and 451.1 hr, respectively in bone scan, 62.5, 519.3 and 1313.6 hr, respectively in myocardial SPECT. Conclusion Radiation exposure rate may differ slightly depending on the work process and the environment in a general ward. Exposure rate was measured at step in the general examination procedure and it made our results more reliable. Our results clearly showed that total amount of radiation exposure caused by residual radioactive isotope in the patient body was neglectable, even comparing with the natural radiation exposure. In conclusion, nurses in a general ward were much less exposed than the normal dose limit, and the effects of exposure by contacting patients undergoing nuclear medicine examination was ignorable.

  • PDF

A Study of Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET-CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Kim, Bit-Na;Cho, Suk Won;Lee, Juyoung;Lyu, Kwang Yeul;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to 99mTc emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radio technologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radio technologists. Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8cm$, mean weight: $65.9{\pm}1.4kg$). Radiation was measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150, and 200 cm, respectively. Then, all the procedure was given with a portable radiation shielding on the location of head, chest, and abdomen at the distance of 100, 150, and 200 cm and transmittance was calculated. In 10 cm, head ($105.40{\mu}Sv/h$) was the highest and foot($15.85{\mu}Sv/h$) was the lowest. In 200 cm, head, chest, and abdomen showed similar. On head, the measured dose rates were $9.56{\mu}Sv/h$, $5.23{\mu}Sv/h$, and $3.40{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.24{\mu}Sv/h$, $1.67{\mu}Sv/h$, and $1.27{\mu}Sv/h$ in 100, 150, and 200 cm on head. On chest, the measured dose rates were $8.54{\mu}Sv/h$, $4.90{\mu}Sv/h$, $3.44{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.27{\mu}Sv/h$, $1.34{\mu}Sv/h$, and $1.13{\mu}Sv/h$ in 100, 150, and 200 cm on chest. On abdomen, the measured dose rates were $9.83{\mu}Sv/h$, $5.15{\mu}Sv/h$, and $3.18{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.60{\mu}Sv/h$, $1.75{\mu}Sv/h$, and $1.23{\mu}Sv/h$ in 100, 150, and 200 cm on abdomen. Transmittance was increased as the distance was expanded. As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the technologists.

Comparison on the Dosimetry of OSLD and PLD Used in Nuclear Medicine (형광유리 선량계와 광자극 발광선량계를 이용한 핵의학과 선량 측정비교)

  • Park, Jeong-kyu;Son, Sang-Joon;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.47-51
    • /
    • 2019
  • This study was conducted from July 1 to September 30, 2018 using Optically Stimulated Luminescence Dosimeter(OSLD) and photoluminescent glass dosimeter(PLD) to measure the 3-month exposure dose and the cumulative dose in the active working area of the nuclear medicine worker Respectively. As a result, the cumulative dose for three months in the worker and work area was measured as 1.97 mSv and 2.02 mSv in the PLD. The mean surface dose and the mean depth dose of the OSLD were measured to be 2.04 mSv. The difference in the total surface dose measured by the PLD and the OSLD was 0.66mSv and the total mean surface dose was 0.07mSv. The difference between the total depth dose and the total depth dose was 0.1mSv and 0.02mSv, respectively. It was found that the dose value of the OSLD was higher than that of the PLD. In addition, it was found that the maximum difference of 0.01mSv was observed between the PLD and the OSLD of the worker. For the dose measurement of the two dosimetry systems, there was no significant difference between the PLD and the OSLD in the surface dose of 0.239 (p>0.05). Also, the significance of PLD and OSLD in the deep dose was 0.109, which was not statistically significant (p>0.05).

The alternative approach of low temperature-long time cooking on bovine semitendinosus meat quality

  • Ismail, Ishamri;Hwang, Young-Hwa;Bakhsh, Allah;Joo, Seon-Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.282-289
    • /
    • 2019
  • Objective: This study aimed to elucidate whether innovative sous vide treatment has a significant influence on the beef semitendinosus muscle as compared to common sous vide treatment and traditional cooking. Methods: The innovative sous vide treatments were cooked at $45^{\circ}C$ and $65^{\circ}C$ for 6 h (SV45-65), common sous vide treatment at $45^{\circ}C$ and $65^{\circ}C$ for 3 h (SV45 and SV65) and traditional cooking at $75^{\circ}C$ for 30 min (CON75). Water loss and cooking loss, as well as the physical properties (color and shear force) and chemical properties (protein and collagen solubility) of the treated meat, were investigated. Results: The results obtained indicated that the innovative sous vide with double thermal treatment (SV45-65) and cooked with air presence (CON75) resulted to lower $a^*$ and higher $b^*$ values, respectively. The water loss and cooking loss increased when temperature increased from $45^{\circ}C$ to $65^{\circ}C$, and lower water loss was recorded in SV45 and CON75. These samples presented higher water content and revealed strong correlation to protein solubility. Warner-Bratzler shear force (SF) analysis showed the marked interaction between cooking temperature and time. Sample cooked at a high temperature (CON75) and a long period (SV45-65) showed a significantly lower value of SF than sample SV65 (p<0.05). Interestingly, there was no difference in SF values between SV45-65 and CON75. Conclusion: The innovative sous vide treatment with double thermal effect appears an attractive cooking method as compared to common sous vide and traditional cooking method, as it has a potential for improving tenderness values of cooked beef semitendinosus muscle.

Medical Exposure of Korean by Diagnostic Radiology and Nuclear Medicine Examinations (진단방사선 및 핵의학 검사에 의한 한국인의 의료상 피폭)

  • Kwon, Jeong-Wan;Jeong, Je-Ho;Jang, Ki-Won;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.185-196
    • /
    • 2005
  • Although medical exposure from diagnostic radiology procedures such as conventional x-rays, CT and PET scans is necessary for healthcare purposes, understanding its characteristics and size of the resulting radiation dose to patients is much of worth because medical radiation constitutes the largest artificial source of exposure and the medical exposure is in a trend of fast increasing particularly in the developed society. Annual collective doses and per-caput effective doses from different radiology procedures in Korea were estimated by combining the effective dose estimates per single medical procedure and the health insurance statistics in 2002. Values of the effective dose per single procedure were compiled from different sources including NRPB reports, ICRP 80, MIRDOSE3.1 code and independent computations of the authors. The annual collective dose reaches 27440 man-Sv (diagnostic radiology: 22880 man-Sv, nuclear medicine: 4560 man-Sv) which is reduced to the annual per-caput effective dose of 0.58 mSv by dividing by the national population of 47.7 millions. The collective dose is far larger than that of occupational exposures, in the country operated 16 nuclear power plants in 2002, which is no more than 70 man-Sv in the same year. It is particularly noted that the collective dose due to CT scans amounts 9960 man-Sv. These results implies that the national policy for radiation protection should pay much more attention to optimization of patient doses in medicine.

Comparison of the Equivalent Dose of the Lens Part and the Effective Dose of the Chest in the PET/CT Radiation Workers in the Nuclear Medicine Department (핵의학과 PET/CT실 방사선작업종사자의 수정체 부위의 등가선량과 흉부의 유효선량의 측정 비교)

  • Son, Sang-Joon;Park, Jeong-Kyu;Jung, Dong-Kyung;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.209-215
    • /
    • 2019
  • Comparison of the effective dose of the chest and the equivalent dose of the lens site in the radiation workers working at four medical institutions with the PET / CT room located in one metropolitan city and province from April 1 to June 30, 2018 Respectively. Radioactive medicine were measured at the time of dispensing and at the time of injection. In this experiment, the average dispensing time per patient was 5.7 minutes and the average injection time was 3.1 minutes. The equivalent dose at the lens site was $0.78{\mu}Sv/h$ for 1 mCi, and the effective dose for chest was $0.18{\mu}Sv/h$ per 1 mCi. The equivalent dose at the lens site during injection was $0.88{\mu}Sv/h$ per mCi and the effective dose of chest was $0.20{\mu}Sv/h$ per mCi. The daily effective dose of the chest was $0.9{\pm}0.6{\mu}Sv$ and the equivalent dose of the lens site was $3.6{\pm}1.4{\mu}Sv$ during daily dosing for 20 days. The effective dose of the chest during the day was $0.6{\pm}0.5{\mu}Sv$ and the equivalent dose of the lens was $2.2{\pm}1.0{\mu}Sv$. At the time of dispensing, the equivalent dose of the lens was $0.187{\pm}0.035mSv$, the effective dose of the chest was $0.137{\pm}0.055mSv$, the equivalent dose of the lens was $0.247{\pm}0.057mSv$, and the effective dose of the monthly chest was $0.187{\pm}0.021mSv$. As a result of the corresponding sample test, the equivalent dose and the effective dose of the chest, the effective dose of the chest, the effective dose of the chest, the effective dose of the chest, The equivalent dose of the lens and the effective dose of the chest were statistically significant (p<0.05) with a significance of 0.000. However, there was no statistically significant difference (p>0.05) between the equivalent dose and the effective dose of the chest, the equivalent dose of the lens at the time of injection, and the effective dose of the chest at 0.138 and 0.230, respectively.

Effects of Temperature and Time on the Cookery Properties of Sous-vide Processed Pork Loin

  • Hwang, Su-In;Lee, Eun-Jung;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • This study investigated the effects of temperature ($50^{\circ}C$, $55^{\circ}C$, and $60^{\circ}C$) and time (12 and 24 h) on the cookery properties of sous-vide (SV) processed pork loin. As an indicator of cookery properties, cooking loss, expressible moisture (EM), pH, differential scanning calorimetry (DSC), shear force, total plate count (TPC) and CIE color were measured and compared with fresh (FC) and cooked control (CC, $75^{\circ}C$ for 30 min). SV treatments at $50^{\circ}C$ showed higher tenderness and lower cooking loss comparing to CC. DSC result indicated that thermal transition of collagen was a key factor affecting the cooking loss and shear force of meat. In comparison of CC, risks of insufficient pasteurization and uncooked color generation were not shown in SV processed meat. Therefore, the results indicated that SV had a potential advantage to produce tender and moist meat, and the best SV condition of pork loin was estimated at $50^{\circ}C$ for 24 h.

Measurement of the Skin Dose of Patient Using the Optically Stimulated Luminescent Dosimeter at Diagnostic Radiography (진단방사선촬영에서 광자극발광선량계를 이용한 환자 피부선량의 측정)

  • Kim, Jong-Eon;Im, In-Chul;Min, Byung-In
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.437-442
    • /
    • 2011
  • The purpose of this study is an measurement of the skin dose of a patient by using the OSLD(optically stimulated luminescent dosimeter) under several irradiation conditions of the X-ray beam for diagnostic radiography. The measurements of skin dose were performed for head, chest, and pelvis. And test of reproducibility was carried out at the chest. As a result, we obtained the skin dose at forehead of head to be 1.30 mSv. The skin doses at xiphoid process, breast and apex of the lung of the chest were acquired 0.92, 0.52 and 0.70 mSv, respectively. And we obtained the skin doses at the left pelvis and the right pelvis to be 2.78 and 3.08 mSv, respectively. As for reproducibility, a coefficient of variation was 0.033. The skin doses were exhibited the values corresponding from 1/100 to 1/17 of the dose limit of the public(50 mSv) at the deterministic effect. In order to make accurate measurements of the skin doses for each tube voltage, the measured values have to multiply by the displayed values of reader by a correction factor. The energy response of the OSLD with the tube voltage will be studied in the near future.

Analysis of Exposure Dose According to Chest and Abdomen Combine CT Exam Method (CT 흉·복부 통합검사 시 선량분석)

  • Mo, KyeongHwan;Han, DongKyoon;Lim, HyunSoo;Jeon, WooJin
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.401-408
    • /
    • 2014
  • The purpose of this study is confirmed to usefulness between division exam and combine exam of chest and abdomen according to comparing chest and abdomen radiation dose of division exam and combine exam in CT exam method. This study was conducted on patients who were admitted to the E hospital from July 2013 to March 2014 underwent CT studies for the diagnosis of chest and abdomen disease. In study result, male dose were more higher than female dose according to gender analysis of exposure dose that combine exam effective dose were male $33.10{\pm}2.75mSv$, female $31.66{\pm}3.12mSv$ and chest exam effective dose were male $9.07{\pm}2.62mSv$, female $8.30{\pm}2.18mSv$(p<0.05). And, division exam dose and combine exam dose were similar in gender comparison (p>0.05). And, combine exam effective dose, only chest exam effective dose, only abdomen exam effective dose were more higher than DRL(Diagnostic Reference Level) in comparison of patient exposure dose with DRL (p<0.05). In conclusion, chest-abdomen combine exam dose and division exam dose were similar. The chest-abdomen combine study can be used as follow-up and emergency trauma patients. That study will be reduce exam time and the occurrence risk of side effect of the contrast medium.