• 제목/요약/키워드: SUSPENSION

검색결과 4,715건 처리시간 0.036초

간헐적인 낮은강도, 짧은기간의 운동부하가 뒷다리 부유쥐의 Type II근육에 미치는 영향 (Effect of intermittent low-intensity, short duration exercise on Type IImuscle of suspended rats)

  • 최명애;지제근;김은희
    • 대한간호학회지
    • /
    • 제25권2호
    • /
    • pp.193-209
    • /
    • 1995
  • The purpose of this study was to determine the effect of intermittent low - intensity, short duration exercise during hindlimb suspension on the mass, relative weight, myofibrillar protein content, cross-sectional area of Type I and Type II fibers and SDH activity in Type II(plantaris) muscle. To examine the effectiveness of intermittent low-intensity, short duration exercise on mass, myofibrillar protein content and fiber size, the hindlimbs of adult female Wistar rats were suspended(HS) and half of these rats walked on a treadmill for 45 min/day(9 min every 2h) at 5m /min and a 15$^{\circ}$grade (HS-EX). Plantaris wet weight was 19.67% significantly smaller(p<0.005) and relative plantaris weight was 6.25% smaller compared with those of control rats following seven days of hindlimb suspension. Plantaris wet weight and relative plantaris weight increased by 27.66%, 12.22% each through intermit-tent exercise during hindlimb suspension(p<0.005, p<0.05), moreover, plantaris wet weight and relative plantaris weight of the HS-EX rats were similar to those of control rats. Soleus wet weight and relative soleus weight decreased significantly by 31% and 22.0% in the HS rats(p<0.05). Soleus wet weight and relative soleus weight increased by 10.41%, 25.64% respectively through intermittent ex-ercise during hindlimb suspension, furthermore, soleus wet weight and relative weight of the HS-EX rats were closer to those of control rats. Myofibrillar protein content of plantaris and soleus decreased significantly by 51.49%, 59.65% each, following seven days of hindlimb suspension (p<0.005) Myofibrillar protein content of plantaris and soleus increased by 51.79%, 75.47% each with significance through intermittent exercise during hindlimb suspension(p<0.005). Myofibrillar protein content of plantaris and soleus in HS-EX rats was smaller than that of control rats. No change was observed in fiber type percentage following 1 week of hindlimb suspension or exercise during hindlimb suspension. The type I fiber cross-sectional area of both soleus and plantaris muscle was 18.72% and 41.07% lower in the HS than that of the controls (p<0.05, p<.001), that of both muscles was 6.60% and 29. 3% greater in the HS-EX than that of the HS rats. HS plus intermittent low- intensity short duration exercise resulted in Type I fiber cross-sectional area closer to the controls. Type II fiber cross-sectional area of both plantaris and soleus muscle was 22.45% and 22.58% sl nailer in the HS than in the controls, that of both muschles in the HS-EX was 14.10%, 5.78% greater than HS. Intermittent exercise during hindlimb suspension resulted in Type I, II fiber cross-sectional area closer to the control value. There was no change in SDH activity following 1week of hindlimb suspension or exercise during hindlimb suspension in the plantaris muscle. The results suggest that intermittent low intensity short duration exercise can ameliorate Type II muscular atrophy Induced by hindlimb suspension.

  • PDF

오차 자기 순환 신경회로망을 이용한 현가시스템 인식과 슬라이딩 모드 제어기 개발 (Identification of suspension systems using error self recurrent neural network and development of sliding mode controller)

  • 송광현;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.625-628
    • /
    • 1997
  • In this paper the new neural network and sliding mode suspension controller is proposed. That neural network is error self-recurrent neural network. For fast on-line learning, this paper use recursive least squares method. A new neural networks converges considerably faster than the backpropagation algorithm and has advantages of being less affected by the poor initial weights and learning rate. The controller for suspension systems is designed according to sliding mode technique based on new proposed neural network.

  • PDF

승차감향상을 위한 자동차현가장치의 능동제어시스템 (Active Control System of a Vehicle Suspension for improving Ride Quality)

  • 박호;전의식;노병옥
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.102-109
    • /
    • 1998
  • As the fundamental study of an active suspension system, computer simulation is performed using a quarter model. Design data for the development of active suspension system are presented through performance estimation of active control laws in the time and frequency domain. The verification of compromise between ride quality and handling characteristics is carried out.

  • PDF

광픽업용 서스펜션의 개발연구 (The Design of an Optical Pick-up Actuator Suspension)

  • 김윤영;윤민수;김진홍;박의호;한준용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.136-141
    • /
    • 1996
  • A new suspension model of an optical pick-up actuator is developed. This model is very stable and easily manufactured owing to its specially designed geometry. In designing the suspension, the first two natural frequencies are kept lying in a certain range and sub-resonance frequencies are made as high as possible. The vibration and sensitivity analysis needed for optimal design is based on a simplified beam model of the bobbin-suspension structure. The investigation of the strain energy distribution in each vibration mode appears to be very useful.

  • PDF

Rheological Consideration of Sub-micron Sized Hollow Polyaniline Malonate Salts Suspension under the Electric Field

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • 제8권1호
    • /
    • pp.7-10
    • /
    • 2007
  • The rheological property of hollow PANI malonate suspension in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI malonate suspension exhibited an electric field power of 0.90. On the basis of the experimental results, the newly synthesized hollow PANI malonate suspension was found to be an anhydrous ER fluid.

전도성 모델에 의한 키토산 현탁액의 유변학적 특성 연구 (Electrorheology of Chitosan Suspension by Conduction Models)

  • 최웅수;안병길;이상순;권오관
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.95-99
    • /
    • 1998
  • The electrorheological (ER) behavior of chitosan suspension in the silicone oil was investigated. Chitosan suspension showed a typical ER response, Bingham flow behavior upon application of an electric field due to the polarizability of the branched amino group of the chitosan particles. The shear yield stress exhibited a linear dependence on the volume fraction of particles and the squared electric field. On the basis of the experimental results, chitosan suspension has been correlated with the conduction models for ER response and found to be an ER fluid.

Electrorheological Properties of Chitin and Chitosan Suspensions

  • 최웅수
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.

비선형성을 갖는 전륜 현가장치의 이산시간 모델링 (Discrete Time Modeling of the Front Suspension System with Nonlinearity)

  • 이병림;이재응
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.156-164
    • /
    • 2000
  • In this study, a discrete time model for a simplified front wheel suspension system which has nonlinear dampling and stiffness property is introduced. The model is estimated from the discrete data which are generated based on the real car parameter. The performance of the proposed method is evaluated through numerical simulation, and the simulation results show that the proposed method can estimate the nonlinear behavior of the suspension system very well.

  • PDF

A Study on Intelligent Decentralized Active Suspension Control System with Descriptor LMI Design Method

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.198-203
    • /
    • 2008
  • An Intelligent optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory with representing by descriptor system form is presented. The validity of the linear matrix inequalities intelligent decentralized control system design with representing by descriptor system form in active suspension system through the numerical examples is also investigated.

NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구 (Shape Design of the NFR Suspension Load Beam Considering Dynamic Characteristics)

  • Eun Gilsoo;Kim Nohyu
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.376.2-376
    • /
    • 2002
  • In this study, the shape of suspension load beam for NFR(Near Field Recording) was proposed, which was designed using Topology optimization based on Homogenization method. Lens and Micro-mirror are attached to the end of the suspension load beam for collection and control the light, which increasing the system mass. Increment of the system mass cause to decrease the tracking stiffness mode frequency. (omitted)

  • PDF