• Title/Summary/Keyword: SURFACE ENERGY

Search Result 9,085, Processing Time 0.042 seconds

The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation (이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계)

  • Lee, Jae S.;Kim, Bo-Young;Lee, Jae-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.

Investigation of Surface Reflectance Reduction for Multicrystalline Silicon Solar Cells with Acid Texturing (Acid Texturing에 의한 다결정 실리콘 태양전지의 표면 반사율 감소에 대한 연구)

  • Kim, Ji-Sun;Kim, Bum-Ho;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.16-17
    • /
    • 2007
  • To improve efficiency of solar cells, it is important to make a light trapping structure to reduce surface reflectance for increasing absorption of sun light within the solar cells. One of the promising methods that can reduce surface reflectance is isotropic texturing with acid solution based on hydrofluoric acid(HF), nitric acid($HNO_3$), and organic additives. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its different grain orientation. Isotropic texturing with acid solution can uniformly etch multicrystalline silicon wafers unrelated with grain orientation, so we can get low surface reflectance. In this paper, the acid texturing solution is made up of only HF and $HNO_3$ for easy controling the concentration and low cost compared to acid solution with organic additives. $HNO_3$ concentration and dipping time were varied to find the condition of minimum surface reflectance. Textured surfaces were observed Scanning Electron Microscope(SEM) and surface reflectance were measured. The best result of arithmetic mean(wavelength from 400nm to 1000nm) reflectance with acid texturing is 4.64% less than alkali texturing.

  • PDF

Electrocatalytic Activity of Sulfamic Acid Doped Polyaniline Nanofiber Counter Electrode for Dye Sensitized Solar Cell

  • Jo, Chul-Gi;Ameen, Sadia;Akhtar, M.Shaheer;Kim, Young-Soon;Yang, O-Bong;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.385-385
    • /
    • 2009
  • Uniform polyaniline nanofibers (PANI NFs), and chemically doped sulfamic acid(SFA) PANI NFs, synthesized via template free interfacial polymerization process, were used as new counter electrodes materials for the fabrication of the highly-efficient dyesensitized solar cells (DSSCs). The PANI NFs based fabricated DSSCs exhibited a solarto-electricity conversion efficiency of ~ 4.02% while, the SFA doped PANI NFs based DSSC demonstrated ~ 27% improvement in the solar-to-electricity conversion efficiency. The obtained solar-to-electricity conversion efficiency for SFA doped PANI NFs based DSSC was 5.47% under 100mW/$cm^2$(AM1.5). The enhancement in the conversion efficiency was due to the incorporation of SFA into the PANI NFs which resulted to the higher electrocatalytic activity for the $I^{3-}/I^-$ redox reaction.

  • PDF

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

Effect of Surface Treatment of Polycarbonate Film on the Adhesion Characteristic of Deposited SiOx Barrier Layer (폴리카보네이트 필름 표면 처리가 증착 SiOx 베리어층 접착에 미치는 영향)

  • Kim, Gwan Hoon;Hwang, Hee Nam;Kim, Yang Kook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2013
  • The interfacial adhesion strength is very important in $SiO_x$ deposited PC film for the barrier enhanced polycarbonate (PC) flexible substrate. In this study, PC films were treated by undercoating, UV/$O_3$ and low temperature plasma and then the effect of physical and chemical surface modifications on the interfacial adhesion strength between PC film and $SiO_x$ barrier layer were studied. It was found that untreated PC film shows significantly low interfacial adhesion strength due to the smooth surface and low surface free energy of PC. Low temperature plasma treatments resulted in the increase of both surface roughness and surface free energy due to etching and the appearance of polar molecules on the PC surface. However, UV/$O_3$ treatment only shows the increase of surface free energy by developed polar molecules on the surface. These surface modifications caused the enhancement of surface interfacial strength between PC film and $SiO_x$ barrier. In the case of undercoating, it was found that the increase of surface interfacial strength was achieved by adhesion between various acrylic acid on acrylate coated surface and $SiO_x$ without increase of polar surface energy. In addition, the barrier property is also improved by organic-inorganic hybrid multilayer structure.

Surface energy change and hydrophilic formation of PE, PS and PTFE films modification by hydrogen ion assisted reaction

  • Jung Cho;Ki Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.202-202
    • /
    • 1999
  • The Polyethylene (PE), Polystyrene (PS) and Polytetrafluoroethylene (PTFE) surface modification was investigated by hydrogen io assisted reaction (H-IAR) in oxygen environment. The IAR is a kind of surface modification techniques using ion beam irradiation in reactive gas environment. The energy of hydrogen ion beam was fixed at 1keV, io dose was varied from 5$\times$1014 to 1$\times$1017 ions/$\textrm{cm}^2$, and amount of oxygen blowing gas was fixed 4ml/min. Wettability was measured by water contact angles measurement, and the surface functionality was analyzed by x-ray photoelectron spectroscopy. The contact angle of water on PE modified by argon ion beam only decrease from 95$^{\circ}$ to 52$^{\circ}$, and surface energy was not changed significantly. But, the contact angle using hydrogen ion beam with flowing 4ml/min oxygen stiffly decreased to 8$^{\circ}$ and surface energy to 65 ergs/cm. In case of PS, the contact angle and surface energy changes were similar results of PE, but the contact angle of PTEE samples decreased with ion dose up to 1$\times$1015 ions/$\textrm{cm}^2$, increased at higher dose, and finally increased to the extent that no wetting was appeared at 1$\times$1017 ions/$\textrm{cm}^2$. These results must be due to the hydrogen ion beam that cleans the surface removing the impurities on polymer surfaces, then hydrogen ion beam was activated with C-H bonding to make some functional groups in order to react with the oxygen gases. Finally, unstable polymer surface can be changed from hydrophobic to hydrophilic formation such as C-O and C=O that were confirmed by the XPS analysis, conclusionally, the ion assisted reaction is very effective tools to attach reactive ion species to form functional groups on C-C bond chains of PE, PS and PTFE.

  • PDF

A Study on the Surface Modification Mechanism of Copper Foil Using O2 / Ar Plasma (O2 / Ar 플라즈마를 이용한 구리호일 표면 개질에 관한 연구)

  • Lee, Jongchan;Son, Jinyoung;Kim, Moonkeun;Kwon, Kwang-Ho;Lee, Hyunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.836-840
    • /
    • 2013
  • In this study, the surface modification of copper foil using an inductively coupled $O_2$ / Ar plasma as $O_2$ gas fraction (0~100%) was investigated in order to improve the surface characteristics. After plasma treatment, the measurement of the surface roughness, surface contact angle and surface energy were performed for the surface analysis of copper foil. As a result, the surface roughness and the surface energy were increased. And plasma diagnostics was performed by a double Langmuir probe (DLP) and optical emission spectroscopy (OES). Using these results, the plasma surface modification mechanism was investigated.

Detergency of PET Film Having Various Surface Free Energy : Part II The Work of Detergency and the Washability of Triolein from MAA Grafted PET Film (Polyethylene terephthalate 필름의 표면에너지 변화에 따른 세척성(제이보) MAA그라프트 PET필름에서 triolein의 세척일과 세척성)

  • Chung Hae-Won;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.2 s.27
    • /
    • pp.225-235
    • /
    • 1988
  • The effects of surface free energy of substrates on the soiling and on the detergency of the oily soil were studied. The surface tension consisted of dispersion force and polar force components of substrate, oily soil and surfactant solutions were calculated by extended Fowkes' equation. From these values, work of adhesion($W_a$), work of detergency($W_D$), ana residual work of detergency($W_{D,R}$) were calculated. The correlations between these theoretical values of the works and detergency were discussed. MAA grafted PET film was used as substrate, triolein as oily soil and nonylphenol polyoxyethylene ether(NPE) having various mole numbers of oxyethylene adducts and dodecylbenzene sulfonate (DBS) as surfactants. Detergency was estimated by means of radioactive tracer method using $C^{14}-triolein$. The results showed that $W_a$ was decreased with the increase of surface free energy of substrate. In water, $W_D\;and\;W_{D,R}$ were decreased and detergency of tiolein was increased with the increase of surface free energy of substrate. In surfactant solutions, the lower the surface free energy of substrate and the lower oxyethylene adducts of NPE were the more effective on detergency. The detergency of DBS solution was the lowest in the case of ungrafted PET film, but even small increase in surface free energy by grafting showed much increase in detergency.

  • PDF

Polydopamine Coating Behaviors on the Acrylic Acid Grafted-Nanofibers (아크릴산이 그라프트된 나노섬유에서의 폴리도파민 코팅)

  • Shin, Young Min;Kim, Woo-Jin;Park, Jong-Seok;Gwon, Hui-Jeong;Nho, Young-Chang;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.371-376
    • /
    • 2011
  • The surface property of the materials used in tissue engineering application has been essential to regulate cellular behaviors by directing their adhesion on the materials. To modulate surface property of the synthetic biodegradable materials, a variety of surface modification techniques have used to introduced surface functional groups or bioactive molecules, recently polydopamine coating method have been introduce as a facile modification method which can be coated on various materials such as polymers, metals, and ceramics regardless of their surface property. However, there are no reports about the degree of polydopamine coating on the materials with different hydrophilicity. In the present study, we prepared acrylic acid grafted nanofibrous meshes using electron-beam irradiation, and then coated meshes with polydopamine. Polydopamine successfully coated on the all meshes, both properties of acrylic acid and polydopamine were detected on the meshes. In addition, the degree of polydopamine deposition on the materials has been altered according to surface hydrophilicity, which was approximately 8-times greater than those on the non-modified materials. In conclusion, dual effect from the acrylic acid grafting and polydopamine may give a chance as a alternative tool in tissue engineering application.

Construction of Aquatic Environmental Database Near Wolsong Nuclear Power Plant (월성 원전 주변 수생 환경 자료 구축)

  • Suh, Kyung-Suk;Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.235-243
    • /
    • 2019
  • Radioactive materials are released into the air and deposited on the surface soil after a nuclear accident. Radionuclides deposited in soil are transported by precipitation to nearby environments and contaminate the surface water system. Basic data on surface watershed and soil erosion models have been collected and analyzed to evaluate the behavior of radionuclides deposited on surface soil after a nuclear accident. Data acquisition and analysis in aquatic environment were performed to investigate the physical characteristics and variation of biota in rivers and lakes of the Nakdong river area near the Wolsong nuclear power plant. For these purposes, a digital map, and hydrological, water quality and biota data were gathered and a systematic database (DB) was constructed in connection with them. Constructed aquatic DB will be supplied and used in surface watershed and soil erosion models for investigation of long-term movement of radionuclides in adsorptive form in surface soil. Finally, basic data and established models will be utilized for general radiological impact assessment in aquatic environment.