• Title/Summary/Keyword: SURF model

Search Result 109, Processing Time 0.022 seconds

Panoramic Image Composition Algorithm through Scaling and Rotation Invariant Features (크기 및 회전 불변 특징점을 이용한 파노라마 영상 합성 알고리즘)

  • Kwon, Ki-Won;Lee, Hae-Yeoun;Oh, Duk-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.333-344
    • /
    • 2010
  • This paper addresses the way to compose paronamic images from images taken the same objects. With the spread of digital camera, the panoramic image has been studied to generate with its interest. In this paper, we propose a panoramic image generation method using scaling and rotation invariant features. First, feature points are extracted from input images and matched with a RANSAC algorithm. Then, after the perspective model is estimated, the input image is registered with this model. Since the SURF feature extraction algorithm is adapted, the proposed method is robust against geometric distortions such as scaling and rotation. Also, the improvement of computational cost is achieved. In the experiment, the SURF feature in the proposed method is compared with features from Harris corner detector or the SIFT algorithm. The proposed method is tested by generating panoramic images using $640{\times}480$ images. Results show that it takes 0.4 second in average for computation and is more efficient than other schemes.

Regular Wave Generation Using Three Different Numerical Models under Perfect Reflection Condition and Validation with Experimental Data (세 가지 수치모델을 이용한 완전반사 조건에서의 규칙파 조파 및 수리실험 검증)

  • Oh, Sang-Ho;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.199-208
    • /
    • 2019
  • Regular waves were generated in a wave flume under perfect reflection condition to evaluate performance of three CFD models of CADMAS-SURF, olaFlow, and KIOSTFOAM. The experiments and numerical simulations were carried out for three different conditions of non-breaking, breaking of standing waves, and breaking of incident waves. Among the three CFD models, KIOSTFOAM showed best performance in reproducing the experimental results. Although the run time was reduced by using CADMAS-SURF, its computational accuracy was worse than KIOSTFOAM. olaFlow was the fastest model, but active wave absorption at the wave generation boundary was not satisfactory. In addition, the model excessively dissipated wave energy when wave breaking occurred.

Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques (관측자료 동화기법과 댐운영을 고려한 실시간 댐 수문량 예측모형 개발)

  • Lee, Byong Ju;Jung, Il-Won;Jung, Hyun-Sook;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.755-765
    • /
    • 2013
  • This study developed a real-time dam's hydrologic variables prediction model (DHVPM) and evaluated its performance for simulating historical dam inflow and outflow in the Chungju dam basin. The DHVPM consists of the Sejong University River Forecast (SURF) model for hydrologic modeling and an autoreservoir operation method (Auto ROM) for dam operation. SURF model is continuous rainfall-runoff model with data assimilation using an ensemble Kalman filter technique. The four extreme events including the maximum inflow of each year for 2006~2009 were selected to examine the performance of DHVPM. The statistical criteria, the relative error in peak flow, root mean square error, and model efficiency, demonstrated that DHVPM with data assimilation can simulate more close to observed inflow than those with no data assimilation at both 1-hour lead time, except the relative error in peak flow in 2007. Especially, DHVPM with data assimilation until 10-hour lead time reduced the biases of inflow forecast attributed to observed precipitation error. In conclusion, DHVPM with data assimilation can be useful to improve the accuracy of inflow forecast in the basin where real-time observed inflow are available.

Effects of Coastal Groundwater Level on Beach Deformation (해안지하수위가 해빈변형에 미치는 영향)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.581-589
    • /
    • 2019
  • In order to understand the characteristics of beach deformation, in this study, numerical simulations were conducted using a 3-D hydro-morphodynamic model (HYMO-WASS-3D) to analyze the characteristics of beach deformation due to the coastal groundwater levels. HYMO-WASS-3D directly analyzed the nonlinear interaction between the hydrodynamic and morphodynamic processes in the coastal area. The simulation results of HYMO-WASS-3D showed good agreement with the experimental results on the changes in the profile of the beach in the surf and swash zones. Then, numerical simulations were conducted to examine the characteristics of beach deformation due to the variation of the level of the coastal groundwater. As a result, the beach profiles were examined in relation to the wave breaking in the surf zone and the wave uprush and backwash in the swash zone due to the differences in the water levels. This paper also discussed the temporal and spatial distributions of the velocities, vorticities, and suspended sediments in the surf and swash zones with various levels of the coastal groundwater.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Surf-Zone Using LES and Dynamic Smagorinsky Turbulence Model (LES와 Dynamic Smagorinsky 난류모형을 이용한 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2020
  • Natural shoreline repeats its re-treatment and advance in response to the endlessly varying sea-conditions, and once severely eroded under stormy weather conditions, natural beaches are gradually recovered via a boundary layer streaming when swells are prevailing after storms cease. Our understanding of the boundary layer streaming over surf-zone often falls short despite its great engineering value, and here it should be noted that the most sediments available along the shore are supplied over the surf-zone. In this rationale, numerical simulation was implemented to investigate the hydraulic characteristics of boundary layer streaming over the surf zone in this study. In doing so, comprehensive numerical models made of Spatially filtered Navier-Stokes Eq., LES (Large Eddy Simulation), Dynamic Smagorinsky turbulence closure were used, and the effects of turbulence closure such as Dynamic Smagorinsky in LES and k-ε on the numerically simulated flow field were also investigated. Numerical results show that due to the intrinsic limits of k-ε turbulence model, numerically simulated flow velocity near the bottom based on k-ε model and wall function are over-predicted than the one using Dynamic Smagorinsky in LES. It is also shown that flow velocities near the bottom are faster than the one above the bottom which are relatively free from the presence of the bottom, complying the typical boundary layer streaming by Longuet-Higgins (1957), the spatial scope where boundary layer streaming are occurring is extended well into the surf zone as incoming waves are getting longer. These tendencies are plausible considering that it is the bottom friction that triggers a boundary layer streaming, and longer waves start to feel the bottom much faster than shorter waves.

Prediction of Wave-Induced Current Using Time-Dependent Wave Model (쌍곡선형 파랑모형을 이용한 해빈류 예측)

  • 김재중;이정만
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.269-280
    • /
    • 1998
  • A Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mixing radiation stresses surface and bottom stresses are considered in our current model. Copeland’s(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda’s(1974) experimental results for the uniform slope coastal region test and Nishimura & Naruyama’s (1985) experimental results and numerical simulation results for the detached breakwater. The results from our wave model and wave model and wave-induced current model show good agreements with the others and also show nonlinear effects around the detached breakwater. The model in this study can be applied in the surf zone considering the friction stresses.

  • PDF

Prediction of Wave-Induced Current Using Time-Dependent Wave Model (쌍곡선형 파랑모형을 이용한 해빈류 예측)

  • 이정만;김재중
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.189-199
    • /
    • 1998
  • Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study, one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mising, radiation stresses, surface and bottom stresses are considered in our current model. Copeland's(1985) relult is used to calculate radiation stress and Berkmeir & Darlymple's(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda's(1974) experimental results for the uniform slope coastal region test and Nishimura & Maruyama's(1985) experimental relults and numerical simulation results for the detached breakwater test. The results from our wave model show good agreement with the others and also show nonlinear effects around the detached breakwater. Wave induced current model is developed in this study and this model shows nonlinear effects around the detached breakwater and can be applied in the surf zone and also consider the friction stresses.

  • PDF

A Color-Based Medicine Bottle Classification Method Robust to Illumination Variations (조명 변화에 강인한 컬러정보 기반의 약병 분류 기법)

  • Kim, Tae-Hun;Kim, Gi-Seung;Song, Young-Chul;Ryu, Gang-Soo;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • In this paper, we propose the classification method of medicine bottle images using the features with color and size information. It is difficult to classify with size feature only, because there are many similar sizes of bottles. Therefore, we suggest a classification method based on color information, which robust to illumination variations. First, we extract MBR(Minimum Boundary Rectangle) of medicine bottle area using Binary Threshold of Red, Green, and Blue in image and classify images with size. Then, hue information and RGB color average rate are used to classify image, which features are robust to lighting variations. Finally, using SURF(Speed Up Robust Features) algorithm, corresponding image can be found from candidates with previous extracted features. The proposed method makes to reduce execution time and minimize the error rate and is confirmed to be reliable and efficient from experiment.

Improvement Method of Tracking Speed for Color Object using Kalman Filter and SURF (SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 속도 향상 방법)

  • Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.336-344
    • /
    • 2012
  • As an important part of the Computer Vision, the object recognition and tracking function has infinite possibilities range from motion recognition to aerospace applications. One of methods to improve accuracy of the object recognition, are uses colors which have robustness of orientation, scale and occlusion. Computational cost for extracting features can be reduced by using color. Also, for fast object recognition, predicting the location of the object recognition in a smaller area is more effective than lowering accuracy of the algorithm. In this paper, we propose a method that uses SURF descriptors which applied with color model for improving recognition accuracy and combines with Kalman filter which is Motion estimation algorithm for fast object tracking. As a result, the proposed method classified objects which have same patterns with different colors and showed fast tracking results by performing recognition in ROI which estimates future motion of an object.