• 제목/요약/키워드: SURF Matching

검색결과 75건 처리시간 0.021초

원격 탐사 영상 정합을 위한 딥러닝 기반 특징점 필터링 (Deep Learning-based Keypoint Filtering for Remote Sensing Image Registration)

  • 성준영;이우주;오승준
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.26-38
    • /
    • 2021
  • 본 논문에서는 원격 탐사 영상에 대한 특징 기반 영상 정합 (Image Registration) 방법의 고속화를 위한 딥러닝 기반 특징점 필터링 방법인 DLKF (Deep Learning Keypoint Filtering)를 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. DLKF는 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 구조물의 경계와 인접한 특징점을 보존하고, 서브 샘플링 (Subsampling)된 영상을 사용한다. 또한 영상 분할 (Image Segmentation) 방법을 위해 패치 단위로 잘라낸 영상을 다시 합칠 때 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라낸다. DLKF의 성능을 검증하기 위하여 아리랑 3호 위성 원격 탐사 영상을 사용하여 기존 특징점 검출 방법과 속도와 정확도를 비교하였다. SIFT 기반 정합 방법을 기준으로 SURF 기반 정합 방법은 특징점의 수를 약 18% 감소시키고 속도를 약 2.6배 향상시켰지만 정확도가 3.42에서 5.43으로 저하되었다. 제안하는 방법인 DLKF를 사용하였을 때 특징점의 수를 약 82% 감소시키고 속도를 약 20.5배 향상시키면서 정확도는 4.51로 저하되었다.

달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험 (Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region)

  • 박재민;홍성철;신휴성
    • 대한토목학회논문집
    • /
    • 제42권5호
    • /
    • pp.741-749
    • /
    • 2022
  • 달 영구음영지역에 얼음 형태의 물이 발견되면서 주요 우주국들은 로버 중심의 현장 탐사를 준비 중이다. 달 영구음영지역은 극지역 크레이터의 중심부로 태양광이 직접 도달하지 않지만, 크레이터 벽면으로부터 반사되는 태양광으로 인해 일정 수준의 저조도 환경이 유지되는 것으로 예상된다. 본 연구에서는 달 영구음영지역의 조도와 지형환경을 모사한 실내 테스트베드를 구축하여 모의 지형영상을 촬영하였다. 모의 영상을 대상으로 저조도 영상강화 기법(CLAHE, Dehaze, RetinexNet, GLADNet)을 적용하여 밝기값과 색상복원 효과를 분석하였고, 특징점 추출 및 정합 기법(SIFT, SURF, ORB, AKAZE)의 성능 향상을 분석하였다. 실험 결과 GLADNet과 Dehaze 영상 순으로 저조도 환경에 강인한 시인성 개선 효과를 보여주었다. 반면 특징점 검출 및 정합 기법은 Dehaze와 GLADNet 영상 순으로 성능이 향상됨을 확인하였고, 특히 ORB와 AKAZE의 성능이 크게 개선되었다. 달 탐사에서 로버 탑재 카메라는 3차원 지형정보구축과 지질학적 조사에 활용된다. 따라서 GLADNet은 토양 성분과 암석 종류 판별에 유용하고, Dehaze는 로버의 주행과 함께 3차원 지형정보 구축에 적합할 것으로 판단된다.

무인항공기 RGB 기준 정사영상을 이용한 특징점 추출 알고리즘 비교 (Comparison of Feature Point Extraction Algorithms Using Unmanned Aerial Vehicle RGB Reference Orthophoto)

  • 이기림;성지훈;정세정;신현길;김도훈;이원희
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.263-270
    • /
    • 2024
  • 무인항공기와 무인항공기 센서가 다양하게 개발됨에 따라 기존의 항공사진 또는 원격탐사보다 좁은 면적에 대한 정보를 빠르게 업데이트할 수 있다. 하지만 무인항공기 사진측량에서 지상기준점의 획득과 입력은 많은 시간이 소요되며, 지상기준점 측량과 입력이 잘못될 경우 기하 왜곡이 발생한다. 본 연구에서는 이러한 지상기준점 획득과 입력의 시간을 줄이기 위해 RGB 기준 정사영상을 제작하고, 다양한 센서의 목적 정사영상에 특징점 알고리즘을 적용하여 비교·평가를 수행하였다. 연구대상지 2곳에 대해 4가지 특징점 추출 알고리즘을 적용했으며, 그 결과 특징점 대비 매칭쌍의 비율은 speeded up robust features(SURF)가 가장 우수하였다. 전체적으로 비교했을 때 accelerated-KAZE(AKAZE) 방법이 가장 많은 특징점과 매칭쌍을 추출했으며, binary robust invariant scalable keypoints(BRISK) 방법이 가장 적은 특징점과 매칭쌍을 추출했다. 본 결과를 통해 센서별 목적 정사영상 기하보정 수행 시 AKAZE 방법이 우수한 것을 확인할 수 있었다.

Economical image stitching algorithm for portable panoramic image assistance in automotive application

  • Demiryurek, Ahmet;Kutluay, Emir
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.143-152
    • /
    • 2018
  • In this study an economical image stitching algorithm for use in automotive industry is developed for retrofittable panoramic image assistance applications. The aim of this project is to develop a driving assistance system known as Panoramic Parking Assistance (PPA) which is cheap, retrofittable and compatible for every type of automobiles. PPA generates bird's eye view image using cameras installed on the automobiles. Image stitching requires to get bird's eye view position of the vehicle. Panoramic images are wide area images that cannot be available by taking one shot, attained by stitching the overlapping areas. To achieve correct stitching many algorithms are used. This study includes some type of these algorithms and presents a simple one that is economical and practical. Firstly, the mathematical model of a wide view of angle camera is provided. Then distorted image correction is performed. Stitching is implemented by using the SIFT and SURF algorithms. It has been seen that using such algorithms requires complex image processing knowledge and implementation of high quality digital processors, which would be impracticle and costly for automobile use. Thus a simpler algorithm has been developed to decrase the complexity. The proposed algorithm uses one matching point for every couple of images and has ease of use and does not need high power processors. To show the efficiency, images coming from four distinct cameras are stitched by using the algorithm developed for the study and usability for automotive application is analyzed.

모바일 기기에서 특징적 추출과 정합을 활용한 파노라마 이미지 스티칭 (Panoramic Image Stitching using Feature Extracting and Matching on Mobile Device)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.97-102
    • /
    • 2016
  • Image stitching is a process of combining two or more images with overlapping area to create a panorama of input images, which is considered as an active research area in computer vision, especially in the field of augmented reality with 360 degree images. Image stitching techniques can be categorized into two general approaches: direct and feature based techniques. Direct techniques compare all the pixel intensities of the images with each other, while feature based approaches aim to determine a relationship between the images through distinct features extracted from the images. This paper proposes a novel image stitching method based on feature pixels with approximated clustering filter. When the features are extracted from input images, we calculate a meaning of the minutiae, and apply an effective feature extraction algorithm to improve the processing time. With the evaluation of the results, the proposed method is corresponding accurate and effective, compared to the previous approaches.

면외 회전에 강인한 지역적 그래프 기반의 특징 기술 및 정합 (Robust Feature Description and Matching under Out-of-Plane Rotation using Local Graph)

  • 이만희;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.66-67
    • /
    • 2013
  • 본 논문에서는 지역적인 그래프를 이용하여 면 외 회전에 강인한 특징 기술 및 정합 방법에 대하여 제안한다. 특징 기반의 지역적인 그래프의 경우 SURF 등을 이용하여 찾아진 특징 정보에 대하여 특징 사이의 상관관계를 이용하여 지역적인 그래프를 생성함으로써 특징 기술의 적용 범위를 확장할 수 있고 이러한 지역적인 그래프의 정합을 위하여 새로운 비용 함수와 정합 방법을 제안한다. 또한 특징 정합 시 이를 활용하여 정합 후보를 결정함으로써 면 외 회전이 존재하는 영상에 대해 좀 더 강인한 특징 정합 결과를 얻을 수 있고 실험 결과 기존의 특징 정합 방법에 비하여 찾아지는 후보의 개수가 증가하고 찾아진 정합 결과의 정확도가 증가하는 것을 확인할 수 있다.

  • PDF

천장 영상지도 기반의 전역 위치추정 (Global Localization Based on Ceiling Image Map)

  • 허환;송재복
    • 로봇학회논문지
    • /
    • 제9권3호
    • /
    • pp.170-177
    • /
    • 2014
  • This paper proposes a novel upward-looking camera-based global localization using a ceiling image map. The ceiling images obtained through the SLAM process are integrated into the ceiling image map using a particle filter. Global localization is performed by matching the ceiling image map with the current ceiling image using SURF keypoint correspondences. The robot pose is then estimated by the coordinate transformation from the ceiling image map to the global coordinate system. A series of experiments show that the proposed method is robust in real environments.

물체 인식 기술 및 주변 랜드마크를 활용한 카메라 보정 기술 개발 (Development of Camera Calibration Technique based on Object Recognition and Landmarks)

  • 임원준;이강희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.13-14
    • /
    • 2014
  • 본 논문에서는 랜드마크를 활용한 카메라의 외곡에 대한 보정 기술을 제안한다. 이를 위해 OpenCV를 활용하여 랜드마크와 카메라로 부터 입력받은 영상의 매칭점을 비교하여 매칭 결과를 도출하며 매칭된 결과를 시스템 관리자에게 알려 줌으로써 카메라의 외곡을 확인 할 수 있다. 또한 제안한 방법을 활용하여 카메라의 외곡뿐만 아니라 외곡 각도 계산 까지 가능함에 따라 외부 환경으로 인한 카메라의 각도 변환에 대응 할 수 있으며 시스템 사용자의 편의성 및 비용 감소에도 도움이 될 것이다.

  • PDF

구조물 검출 네트워크 및 특징점 필터링을 이용한 원격 탐사 영상 정합 (Remote Sensing Image Registration using Structure Extraction and Keypoint Filtering)

  • 성준영;이우주;오승준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.300-304
    • /
    • 2020
  • 본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

  • PDF

동영상을 이용한 부유구조물 모형의 변위 관측 (Displacement Measurement of a Floating Structure Model Using a Video Data)

  • 한동엽;김현우;김재민
    • 한국측량학회지
    • /
    • 제31권2호
    • /
    • pp.159-164
    • /
    • 2013
  • 움직이는 한 개의 카메라 동영상으로부터 개체의 3차원 위치를 추출할 수 있다고 알려져 있다. 이로부터 캠코더 측정시스템을 이용하여 부유체 모형에 대한 영상기반 모니터링을 수행하였다. 규칙파 및 비규칙파 실험조건에서의 디지털 캠코더 동영상으로부터 프레임 영상을 추출하고, 특징점을 정합하여, 상대적인 3차원 좌표를 획득하였다. 수정된 SURF 기반 정합의 영상 변환 정확도와 규칙파에서 부유체 모델의 영상기반 변위 관측 정확도를 평가하였다. 규칙파의 경우 조파기의 설정값은 3.0sec이고, 영상기반 변위에 의한 주기는 2.993sec이었다. 기계적 오차를 고려할 때 이 두 값은 유사한 결과로 여겨진다. 시각적으로도 X Y Z축으로의 1차원 투영결과나 3차원 공간에서의 결과에서 규칙파의 형상을 볼 수 있었다. 결과적으로 30fps의 일반 디지털 캠코더 동영상을 이용하여 근실시간으로 위치변동을 계산할 수 있었다.