• Title/Summary/Keyword: STTC(Space-Time-Trellis-Code)

Search Result 17, Processing Time 0.032 seconds

Optimum and Sub-optimum Decoding Methods of Space-Time Trellis Coded Code Division Multiple Access Systems (시공간 트렐리스 부호화 CDMA 시스템의 최적, 준최적 복호 방식과 성능 연구)

  • Ki, Young Min;Kim, Dong Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.130-137
    • /
    • 2002
  • We present Space-Time Trellis Coded Code Division Multiple Access systems, which maintain the full diversity and coding gain of Space-Time Trellis Codes(STTC) and have the immunity to performance degradation caused by multipath fading. These STTC CDMA systems are constructed by adding the spreading and despreading processes of PN codes to STTC systems. In multipath fading channels, delay spreaded signals are detected and combined, then decoded. According to the combining and decoding methods, there are four decoding methods. There are optimum ML decoding without combining, adding multipath signals in each receive antenna before decoding, combining multi path signals in each antenna before decoding, and combining all received signals before decoding. Performance of these methods is proportional to complexity. Besides, all methods are shown to compensate the irreducible error rate which appears in multipath fading channels.

  • PDF

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF

Performance Analysis of STTC Using Time Space Coding Method Appropriate for OFDM System (OFDM System에서 시공간 부호기법으로 STTC의 성능분석)

  • 김동옥
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.473-476
    • /
    • 2003
  • In this paper, presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia OFDM system. The presented method is a comparative analysis between a case where parameter a for time average is 0.3, 1 with consideration of channel presumption with two types of rms delayed proliferation, which is 50nsec, 150nsec, for the performance analysis of STTC(Space-Time Trellis Code) using time-space code method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of 1.0dB in 10$^{-3}$ when a was 0.3 than using only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

  • PDF

Performance analysis of STTC using time-space coding method appropriate for OFDM System (OFDM System에서 시공간 부호 기법으로 STTC의 성능분석)

  • KIM, Dong-Ok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.2
    • /
    • pp.36-45
    • /
    • 2003
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia OFDM (orthogonal FDM) system. The presented method gives a comparative analysis between a case where parameter a for time average is 0.3, i with consideration of channel presumption and two types of rms delayed proliferation, which is 50nsec, 150nsec, for the performance analysis of STTC (Space-Time Trellis Code) using time-space code method which is appropriate for MIMO channel, and performance, in the case, where presumed channel value from long training column section is applied to the according frame in a single frame. The result shows that BER brought SNR improvement of 1.0dB in $10^{-3}$ when a was 0.3 than using only the long training column, and shows an increasement of general performance improvement when the time average factor is used.

  • PDF

Performance Analysis of a Robust Trellis Coded Modulation for a Correlated Fading Channel (페이딩 환경에 강한 트렐리스 부호화 방식의 성능분석)

  • 임수환;황병대;오성근
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.117-120
    • /
    • 2001
  • In this paper, we propose a robust trellis coded modulation for a correlated Rayleigh fading channel. This method use only one transmit antenna, which can achieve superior performance compared to Space-Time Trellis Coded Modulation (STTC) over a wide channel correlation range among transmit antennas. The code is designed to have the largest Euclidean distance between faded signals at the receiver. Computer simulations are performed to evaluate the frame error rate (FER) performance and to compare the proposed code with the conventional one.

  • PDF

A Study of MIMO FTN Scheme based on Layered Space Time Code using Turbo Code (터보부호를 이용한 계층적 시공간 부호기반 MIMO FTN 전송기법 연구)

  • Park, Gun-Woong;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.895-901
    • /
    • 2016
  • The next generation wireless and satellite communications require high transmission efficiency and high reliability to provide various services with subscribers. To satisfied these requirements, incorporated MIMO (Multiple Input Multiple Output) system with FTN (Faster Than Nyquist) techniques based on layered space time coded method are considered in the paper. To improve performance, STTC (Space Time Trellis Code) was employed as an inner code. As the same as SISO (Single Input Single Output) system, the outer codes are turbo codes. In receiver side, BCJR algorithm is used for STTC decoding in order to eliminate interferences induced by FTN transmission. They can yield significantly increased the data rates and improved link reliability without additional bandwidth. Therefore, we proposed a new decoding model for MIMO FTN model and confirmed that performance was improved compared to conventional SISO model according to amount of interference for FTN.

Performance analysis of STTC using time-space ciphering method appropriate for MIMO channel (MIMO 채널에 적합한 시공간 부호 기법으로 STTC의 성능 분석)

  • 권순녀;김동옥;이윤현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.629-632
    • /
    • 2003
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia OFDM system. The presented method is a comparative analysis between a case where parameter $\alpha$for time average is 0.3, 1 with consideration of channel presumption with two types of rms delayed proliferation, which is 50nsec, 150nsec, for the performance analysis of STTC(Space-Time Trellis Code) using time-space ciphering method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of 1.0dB in 10-3 when $\alpha$ was 0.3 than using only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

  • PDF

Performace Analysis of Channel Presumption Technique with STTC Applied to IEEE 802.11a System (IEEE 802.11a 시스템에 STTC를 적용한 채널 추정 기법의 성능분석)

  • Kweon, Soon-Nyu;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.241-250
    • /
    • 2002
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia OFDM system. The presented method is a comparative analysis between a case where parameter ${\alpha}$ for time average is 0.3, 1 with consideration of channel presumption with two types of rms delayed spread, which is 50nsec, 150nsec, for the performance analysis of STTC(Space-Time Trellis Code) using time-space ciphering method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of 1.0 dB in $10^{-3}$ when ${\alpha}$ was 0.3 than using only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

  • PDF

A Study on Turbo Equalization for MIMO Systems Based on LDPC Codes (MIMO 시스템에서 LDPC 부호 기반의 터보등화 방식 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, MIMO system based on turbo equalization techniques which LDPC codes were outer code and space time trellis codes (STTC) were employed as an inner code are studied. LDPC decoder and STTC decoder are connected through the interleaving and de-interleaving that updates each other's information repeatedly. In conventional turbo equalization of MIMO system, BCJR decoder which decodes STTC coded bits required two-bit wise decoding processing. Therefore duo-binary turbo codes are optimal for MIMO system combined with STTC codes. However a LDPC decoder requires bit unit processing, because LDPC codes can't be applied to these system. Therefore this paper proposed turbo equalization for MIMO system based on LDPC codes combined with STTC codes. By the simulation results, we confirmed performance of proposed turbo equalization model was improved about 0.6dB than that of conventional LDPC codes.

Layered Receivers for System Combined Layered Space-Time Processing and Space-Time Trellis Codes (계층화 시공간 구조와 시공간 트렐리스 부호를 결합한 시스템에 적합한 계층화 수신기)

  • 임은정;김동구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.167-167
    • /
    • 2004
  • The system combined layered space-time processing and space-time trellis codes (STTC) provide high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, two layered receiver structures are proposed. One is the LSTT-MMSE in which received bit streams are decoupled by interference nulling and then decoded by separate STTC decoders. The decoded outputs are cancelled from the received signal before advancing to the next layer detection. The other is LSTT-Whitening employing whitening rather than nulling. The receiver employing whitening process shows several advantages on diversity gain and the required number of receive antennas compare to the convolutional coded space-time processing. The proposed receivers use different decoding order scheme according to each interference suwression. The (4, 3) LSTT-Whitening receiver still achieves 1㏈ gain over the (4, 4) LSTT-MMSE and the (4, 4) coded layered space-time processing.