• Title/Summary/Keyword: STSAT3

Search Result 90, Processing Time 0.041 seconds

과학위성1호 비행모델 Bake-Out 시험결과 분석

  • Cho, Hyok-Jin;Seo, Hee-Jun;Lee, Sang-Hoon;Cho, Chang-Lae;Moon, Guee-Won;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.45-49
    • /
    • 2003
  • A Bake-Out test for STSAT-1 FM(Flight Model) was performed in a Bake-Out Chamber at SITC(Satellite Integration & Test Center) in KARI(Korea Aerospace Research Institute). The purpose of this test is to measure and analyze the outgassing rate to affect the optical equipment(FIMS) and to eliminate contaminants through the high temperature bake-out. This Bake-Out test is composed of three parts which are honeycomb panels & harnesses(Batch 1), an assembled satellite(Batch 2), and a disassembled satellite(Batch 3). For each test, quantitative and qualitative measurements and analysis were performed using TQCM(Thermoelectric Quartz Crystal Microbalance) and RGA(Residual Gas Analyzer.)

  • PDF

Development of the Ultra Precision Machining of IR Material for Space Observation Optical System (우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발)

  • Yang, Sun-Choel;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.

Development of STSAT-3 Battery Management System (과학기술위성 3호의 리튬 이온 배터리 운용 시스템 개발)

  • Park, Kyung-Hwa;Kim, Chol-Ho;Lim, Cheol-Woo;Kim, Jin-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1157-1163
    • /
    • 2009
  • This paper introduces the lithium ion battery management system for STSAT-3 satellite. The specifications of lithium ion battery unit are proposed to supply power to the satellite and the overall electrical design for lithium ion battery BMS is presented. Furthermore, the test results of battery management system are shown to verify the design.

Construction of Korean Space Weather Prediction Center: Space radiation effect

  • Lee, Jae-Jin;Cho, Kyung-Suk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Khan-Hyuk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk;Choi, Seong-Hwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.33.3-34
    • /
    • 2008
  • As an activity of building Korean Space Weather Prediction Center (KSWPC), we has studied of radiation effect on the spacecraft components. High energy charged particles trapped by geomagnetic field in the region named Van Allen Belt can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  • PDF

Development of a Hall-thruster Propulsion Controller for Science Technology Satellite-3 (과학기술위성3호 홀 추력 제어기 개발)

  • Rhee, Sung-Ho;Cho, Hee-Keun;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.992-997
    • /
    • 2010
  • The Propulsion Control Module(PCM) of Hall-thruster Propulsion System(HPS) for Science and Technology Satellite-3 (STSAT-3) has the flow control accuracy of less than ${\pm}$3% and the pressure control accuracy of less than ${\pm}$5%. The pressure controller adjusts pressure around the set point by using a Proportional Flow Control Valve (PFCV) and a high pressure transducer, while the flow controller regulates the flow rate using PFCV and the anode current telemetry of the Hall Thruster. The controllers are chosen as the Proportional and Integral(PI) type, and the PI gains are tuned based on the Matlab simulations. The result of the PCM test had the flow control accuracy of less than ${\pm}$1.87% and the pressure control accuracy of less than ${\pm}$5%. This paper describes the design, realization, and performance test results of the PCM.

Analysis of the Single Event Effect of the Science Technology Satellite-3 On-Board Computer under Proton Irradiation (과학기술위성 3호 온보드 컴퓨터의 양성자 빔에 의한 Single Event Effect 분석)

  • Kang, Dong-Soo;Oh, Dae-Soo;Ko, Dae-Ho;Baik, Jong-Chul;Kim, Hyung-Shin;Jhang, Kyoung-Son
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1174-1180
    • /
    • 2011
  • Field Programmable Gate Array(FPGA)s are replacing traditional integrated circuits for space applications due to their lower development cost as well as reconfigurability. However, they are very sensitive to single event upset (SEU) caused by space radiation environment. In order to mitigate the SEU, on-board computer of STSAT-3 employed a triple modular redundancy(TMR) and scrubbing scheme. Experimental results showed that upset threshold energy was improved from 10.6 MeV to 20.3 MeV when the TMR and the scrubbing were applied to the on-board computer. Combining the experimental results with the orbit simulation results, calculated bit-flip rate of on-board computer is 1.23 bit-flips/day assuming in the worst case of STSAT-3 orbit.

Vibration Analyses of the STSAT-3 Satellite (과학기술위성 3 호 진동해석)

  • Cho, Hee-Keun;Suh, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.502-507
    • /
    • 2008
  • An entire composite structure satellite is developing for the first time in Korea. All of the structure is made of CFRP-composite faced aluminum honeycomb sandwich structure. Here the random and sinusoidal spectrum analysis of the satellite was carried out by using the finite element method. The general spectrum analysis was herein performed but also the PSD (power spectrum density) function for random vibration analysis had been transformed into equivalent time domain function and then transient analysis is conducted. The time history of displacement, acceleration, stress and velocity responses with respect to the PSD input has been achieved by the time dependent transient function transformed from frequency PDS function. It enables one to perform dynamic durability analysis and then expect the life time of the composite structure. The composite faced sandwich structure's spectrum analysis of a domestically-developed satellite, STSAT-3, has been discussed in the present study.

  • PDF

Modal Analysis for the Development of Composite Structure of STSAT-3 (과학기술위성3호 복합재 구조체 개발을 위한 진동모드 해석)

  • Cho, Hee-Keun;Seo, Jung-Ki;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1201-1206
    • /
    • 2008
  • This study is focused on the investigation of the modal characteristics of the preliminary models of science technology satellite-3 (STSAT-3). Prior to the final decision of the composite structure model, several candidate structure models have been developed so as to find the most qualified structures with respect to the satellite structure systems' requirements and then utilize the information achieved to a real design. The main structure is composed of fiber reinforced composite faced honeycomb sandwich panel whose modal characteristics are found and compared to each other by means of finite element numerical analyses. Results from the current study demonstrate that a rectangular box shape having supporting inner panel shows relatively higher fundamental mode frequencies than octagonal box shape and etc., and regardless of the structure model shape tested herein, the fundamental mode turns out lateral bending mode.

Development and Experiments of the Low Power Hall Thruster for STSAT-3 (과학기술위성 3호 탑재를 위한 저전력 홀 추력기 개발 및 시험)

  • Lee, Jong-Sub;Seo, Mi-Hui;Seon, Jong-Ho;Choe, Won-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.298-302
    • /
    • 2009
  • Low power Hall thruster is under development as one of the core technologies for STSAT-3. The Hall thruster has several advantages such as its simple structure, high thrust density and specific impulse etc. Development target values deduced by analyzing requirements are consumed electrical power, thrust, thrust efficiency, and specific impulse of < 300 W, > 10 mN, ~ 35%, and > 1000 s, respectively. In order to achieve the target specifications, two prototype Hall thrusters were developed and compared. To date, thrust and efficiency are 11 mN and 37% under the total power of 290 W with 0.97 mg/s Xe propellent supply.

  • PDF