• Title/Summary/Keyword: STSAT-22

Search Result 5, Processing Time 0.018 seconds

Engineering Model Design and Implementation of STSAT-2 On-board computer (과학기술위성 2호 탑재 컴퓨터의 EM 개발 및 구현)

  • Yu, Chang-Wan;Im, Jong-Tae;Nam, Myeong-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • The Engineering Model of STSAT-2 on-board computer(OBC) was developed and tested completely with other sub-systems. The on-board computer of STSAT-2 has a high- performance PowerPC processors and a structure of centralized network communication. In addition, a lot of logics are implemented by Field Programmable Gate Array, such as interrupt controller, watchdog timer and UART. It could make the weight and size of OBC lighter and smaller. Also, the STSAT-2 on-board computer has more improved tolerance against Single Event Upsets and faults than that of the STSAT-1.

PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3 (과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계)

  • Yuk, I.S.;Jin, H.;Lee, S.;Park, Y.S.;Lee, D.H.;Nam, U.W.;Park, J.H.;Han, W.Y.;Lee, J.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 소형영상분광기 발사모델 환경시험 결과)

  • Lee, Sang-Jun;Kim, Jung-Hyun;Lee, Jun-Ho;Lee, Chi-Won;Jang, Tae-Sung;Kang, Kyung-In
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.184-190
    • /
    • 2011
  • A compact imaging spectrometer (COMIS) was developed for a microsatellite STSAT-3. The satellite is now rescheduled to be launched into a low sun-synchronous Earth orbit (~700 km) by the end of 2012. Its main operational goal is the imaging of the Earth's surface and atmosphere with ground sampling distance of 27 m and 2 - 15 nm spectral resolution over visible and near infrared spectrum (0.4 - 1.05 ${\mu}m$). A flight model of COMIS was developed following an engineering model that had successfully demonstrated hyperspectral imaging capability and structural rigidity. In this paper we report the environmental test results of the flight model. The mechanical stiffness of the model was confirmed by a small shift of the natural frequency i.e., < 1% over 10 gRMS random vibration test. Electrical functions of the model were also tested without showing any anomalies during and after vacuum thermal cycling test with < $10^{-5}$ torr and $-30^{\circ}C\;-\;35^{\circ}C$. The imaging capability of the model, represented by a modulation transfer function (MTF) value at the Nyquist frequency, was also kept unvaried after all those environmental tests.

SENSITIVITY CALCULATIONS FOR THE COSMIC IR BACKGROUND OBSERVATIONS BY MIRIS (과학기술위성 3호 다목적 적외선 영상시스템 적외선 우주배경복사 관측 감도 계산)

  • Lee, Dae-Hui;Lee, Seong-Ho;Han, Won-Yong;Park, Jang-Hyeon;Nam, Uk-Won;Jin, Ho;Yuk, In-Su;Park, Yeong-Sik;Park, Seong-Jun;Lee, Hyeong-Mok;Park, Su-Jong;Matsumoto, Toshio;Cooray, Asantha
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.177-181
    • /
    • 2007
  • We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ($0.9{\sim}1.2um$) and H ($1.2{\sim}2.0um$) band with a $4{\times}4$ degree field of view to obtain the large scale structure (${\sim}3$ degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ${\sim}9\;nW\;m^{-2}\;sr^{-1}$ (I band) and ${\sim}6\;nW\;m^{-2}\;sr^{-1}$ (H band), which is appropriate to observe the large scale structure of CIRB.

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.