• 제목/요약/키워드: STSAT-1

검색결과 97건 처리시간 0.021초

Space Weather and Relativistic Electron Enhancement

  • Lee, J.J.;Parks, G.K.;McCarthy, M.P.;Min, K.W.;Lee, E.S.;Kim, H.J.;Park, J.H.;Hwang, J.A.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2006년도 한국우주과학회보 제15권2호
    • /
    • pp.52-52
    • /
    • 2006
  • Many spacecraft failures and anomalies have been attributed to energetic electrons in the Earth's magnetosphere. While the dynamics of these electrons have been studied extensively for several decades, the fundamental question of how they are accelerated is not fully resolved. Proposed theories have not been successful in explaining fast high energy increase such as REE (Relativistic electron enhancement). In this presentation, we show observations of energetic electron precipitation measured by the Korean satellite, STSAT-1 which simultaneously detect (100ev - 20 keV) and (170 - 360 keV) energy electrons at the 680 km orbit, when the RES event observed at the geosynchronous orbit on October 13, 2004. STSAT-1 observed intense electron precipitation in both energy ranges occurred in the midnight sector clearly demonstrating that electrons having wide energy band are injected from the plasma sheet. To make the balance between loss and injection, the injected electron flux should be also large. In this situation, the injected electrons can be trapped into the magnetosphere and produce REE, though they have low e-folding energies. We propose this plasma sheet injection might be the primary source of relativistic electron (1 MeV) flux increases.

  • PDF

Polar rain flux variations in northern hemisphere observed by STSAT_1 with IMF geometry

  • Hong, Jin-Hy;Lee, J.J.;Min, K.W.;Kim, K.H.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.25.2-25.2
    • /
    • 2008
  • Polar rain is a spatially uniform precipitation of electrons with energies around 100eV that penetrate into the polar cap region where geomagnetic field lines are connected to the Interplanetary Magnetic Fields (IMF). Since their occurrences depend on the IMF sector polarity, they are believed to originate from the field aligned component of the solar wind. However, statistically direct correlation between polar rain and solar wind has not been shown. In this presentation, we examined specifically the IMF strength influence on the polar rain flux variation by classifying of IMF sector polarities. For this study, we employed the polar rain flux data measured by STSAT-1 and compared them with the solar wind parameters obtained from the WIND and ACE satellites. We found the direct mutuality between polar rain flux and IMF strength with correlation coefficient above 0.5. This proportional tendency appears stronger when the northern hemisphere is in the away sector of the IMF, which could be associated with a favorable geometry for magnetic reconnection. Simple particle trajectory simulation clearly shows why polar rain intensity depends on the IMF sector polarity. These results are consistent with the direct entry model of Fairfield et al.(1985), while low correlation coefficient with solar wind density, the similarity between slops of both energy spectra shows that transport process occur without acceleration.

  • PDF

리아프노프 함수에 기초한 과학기술위성 2호 펄스형 플라즈마 전기추력기의 동작 안정성 연구 (On Stability of the Pulsed Plasma Thruster for STSAT-2 based on the Lyapunov Function)

  • 신구환;남명용;강경인;임종태;차원호
    • 한국항공우주학회지
    • /
    • 제34권1호
    • /
    • pp.95-102
    • /
    • 2006
  • 펄스형 플라즈마 전기추력기의 설계기술과 제어기법에 있어서는 과거의 기술에 비하여 많은 도약을 하였다. 그리고, 펄스형 플라즈마 전기추력기의 충전된 전기에너지는 추력기 구동시 중요한 비중을 차지함을 알 수 있다. 펄스형 플라즈마 전기추력기는 매 분사시 축전기에 충전된 전기에너지를 방전시켜 분사 시키므로서 추력을 얻는 장치이다. 따라서, 매 분사시 균일한 추력을 얻고자 할 경우에는 동작시점에서 균일한 전기 에너지가 충전되어 있어야 한다. 따라서, 본 논문에서는 매 분사시 균일한 추력을 얻기 위한 기법과 축전기와 추력기 엔진간의 기하학적 연결에 따른 안정성을 연구하였다.

과학기술위성3호 부탑재체 소형영상분광기 미광 해석 (Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3)

  • 이진아;이준호
    • 한국광학회지
    • /
    • 제23권4호
    • /
    • pp.167-171
    • /
    • 2012
  • 과학기술위성3호 부탑재체인 COMIS(Compact Imaging Spectrometer)는 무게 4.25 kg의 소형영상분광기로써 지표면 및 대기과학을 연구할 목적으로 개발되었다. COMIS는 지표면, 대기, 수면으로부터 반사되는 태양 에너지를 고도 700 km에서 가시광 및 근적외선 영역(0.4 ~1.05 ${\mu}m$)에서 해상도 27 m, 관측폭 28 km, 파장 분해능 2 ~ 15 nm를 갖도록 결상 광학계와 분광 광학계로 구성된다. 먼저 지상 $27m{\times}28km$의 해당되는 지표면에서 반사된 빛은 COMIS의 결상 광학계에 의하여 상면에 위치한 $11.8{\mu}m{\times}12.1mm$의 선형 슬릿으로 맺히고, 이후 약 1.1배의 배율을 갖는 분광 광학계의 상면에 $1.4mm{\times}13.3mm$의 크기를 갖는 분광 스펙트럼 영상으로 나타난다. 이 때 부분 반사 및 산란 등에 의한 신호대잡음비(SNR, signal to noise ratio) 저하를 방지하기 위하여 렌즈 및 거울 면에 무반사 및 고반사 코팅이 적용되었고, 내부에는 미광 차단 구조물 등이 설치되었다. 미광 차단 설계의 적정성을 확인하기 위하여 미광 모델 수립과 상용 프로그램을 이용한 미광 해석을 수행하였다. 해석 결과 미광의 세기는 정상 결상 대비 무시할 정도의 값($10^{-5}$)으로 영상에는 실질적인 영향이 없음을 확인하였다.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권4호
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

과학기술위성3호 소형영상분광기 발사모델 환경시험 결과 (Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3)

  • 이상준;김정현;이준호;이치원;장태성;강경인
    • 한국광학회지
    • /
    • 제22권4호
    • /
    • pp.184-190
    • /
    • 2011
  • 과학기술위성3호 부탑재체인 소형영상분광기 COMIS(Compact Imaging Spectrometer)는 400 - 1050 nm의 관측 대역에서 분광 관측을 수행하는 영상 분광기이다. COMIS는 2012년 고도 700 km의 원 궤도에서 발사 된 후 27 m의 공간분해능과 2 - 15 nm의 파장 분해능을 갖도록 설계되었다. 본 논문에서는 COMIS 비행 모델의 환경시험 수행결과를 기술한다. 발사 환경인 진동 가진에 의한 영상분광기의 광학적, 구조적인 변화 여부와 우주환경인 열.진공 상태에서의 기능 시험을 수행하여 안정성 및 신뢰성을 검증 받았다. 우주공간에서의 환경으로 일컬어지는 고진공($10^{-5}$ torr이하)과 $-30^{\circ}C{\sim}35^{\circ}C$의 고온 및 저온의 열적 변화 상태를 모사하는 시험에서 정상적인 기능을 보였고, 10 grms의 랜덤 진동 가진 전.후의 고유 진동수는 1% 이내의 변화량을 보였다. 환경시험 전 후로 영상분광기의 변조전달함수(MTF, Modulation Transfer Function) 측정을 하여 광학 성능이 유지됨을 확인하였다. 환경시험을 마친 영상분광기는 현재 과학기술위성3호 본체와의 조립을 진행 중에 있으며 2012년 발사 예정에 있다.

First Light of the MIRIS, a Compact Wide-field Space IR Telescope

  • Han, Wonyong;Lee, Dae-Hee;Jeong, Woong-Seob;Park, Youngsik;Moon, Bongkon;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.49.2-49.2
    • /
    • 2014
  • The MIRIS (Multi-purpose InfraRed Imaging System) is a compact IR space Telescope, which has been developed by KASI since 2008 as the main payload of Korean STSAT-3. It was launched successfully by a Dnepr Rocket at Yasny Launch site, Russia in November 2013. After the launch, the STSAT-3 successfully settled down at Sun synchronous orbit with altitude of ~ 600km. Communications were regularly made between the ground station and the MIRIS with other secondary payload. We made a series of tests of the MIRIS during the verification period and found that all functions including the passive cooling are working as expected. The MIRIS has a wide-field of view $3.67{\times}3.67$ degrees and wavelength coverage from 0.9 to 2.0 micro-meter with the angular resolution of 51.6 arcsec. The main science missions of the MIRIS are (1) mapping of the Galactic plane with Paschen-alpha line (1.88 micro-meter) for the study of warm interstellar medium and (2) the measurement of large angular fluctuations of cosmic near infrared background radiation with I (1.05 micro meter) and H (1.6 micro meter) bands to identify their origin. We present the results of MIRIS initial operation in this paper.

  • PDF

A Study of Galactic Molecular Clouds through Multiwavelength Observations

  • 박성준;민경욱;선광일;한원용;이대희
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • We focus on two Galactic molecular clouds that are located in wholly different environments and both are observed by FIMS instrument onboard STSAT-1. The Draco cloud is known as a translucent molecular cloud at high Galactic latitude. The FUV spectra show important ionic lines of C IV, Si IV+O IV], Si II* and Al II, indicating the existence of hot and warm interstellar gases in the region. The enhanced C IV emission inside the Draco cloud region is attributable to the turbulent mixing of the interacting cold and warm/hot media, which is supported by the detection of the O III] emission line and the $H{\alpha}$ feature in this region. The Si II* emission covers the remainder of the region outside the Draco cloud, in agreement with previous observations of Galactic halos. Additionally, the H2 fluorescent map is consistent with the morphology of the atomic neutral hydrogen and dust emission of the Draco cloud. In the Aquila Rift region near Galactic plane, FIMS observed that the FUV continuum emission from the core of the Aquila Rift suffers heavy dust extinction. The entire field is divided into three sub-regions that are known as the- "halo," "diffuse," and "star-forming" regions. The "diffuse" and "star-forming" regions show various prominent H2 fluorescent emission lines, while the "halo" region indicates the general ubiquitous characteristics of H2. The CLOUD model and the FUV line ratio are included here to investigate the physical conditions of each sub-region. Finally, the development of an infrared imaging system known as the MIRIS instrument onboard STSAT-3 is briefly introduced. It can be used in WIM studies through $Pa{\alpha}$ observations.

  • PDF

Development of the Infrared Space Telescope, MIRIS

  • 한원용;이대희;박영식;정웅섭;이창희;남욱원;문봉곤;박성준;차상목;표정현;박장현;가능현;선광일;이덕행;이성우;박종오;이형목
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

Detection of the fluorescent emission of hydrogen in the Taurus cloud

  • Dae-Hui Lee;In-Su Yuk;Jang-Hyeon Park;Ho Jin;Gwang-Il Seon;Uk-Won Nam;Won-Yong Han;Gyeong-Uk Min;Gwang-Seon Yu
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.99-99
    • /
    • 2004
  • We detected and analyzed molecular hydrogen fluorescence in the Taurus Cloud using the Far-ultraviolet Imaging Spectrograph (FIMS) on the STSAT-1 which was launched at SeP. 27 2003. FIMS is optimized for observing diffuse emission lines in the interstellar medium in the wavelength bands of 900-l150 and 1300-1700 angstrom. The Taurus region is a local molecular cloud which is good for studying molecular hydrogen fluorescence emissions. (omitted)

  • PDF