• Title/Summary/Keyword: STRUCTURAL PERFORMANCE ENHANCEMENT

Search Result 157, Processing Time 0.035 seconds

Enhancement of in-plane load-bearing capacity of masonry walls by using interlocking units

  • Kayaalp, Fatma Birinci;Husem, Metin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • This paper presents a comparative experimental study on structural behavior of the interlocking masonry walls under in-plane cyclic loading. The main purpose of this study is to increase lateral load-bearing capacities of masonry walls by using interlocking units. The interlocking units were designed by considering failure modes of masonry walls and produced using lightweight foamed concrete. To this end, three masonry walls which are hollow, fully grouted, and reinforced were constructed with interlocking units. Also, a traditional masonry brick wall was built for comparison reasons. The walls were tested under in-plane cyclic loading. Then, structural parameters of the walls such as lateral load bearing and total energy dissipation capacities, ductility, stiffness degradation as well as failure modes obtained from the tests were compared with each other. The results have shown that the walls with the interlocking units have better structural performance than traditional masonry brick walls and they may be used in the construction of low-rise masonry structures in rural areas to improve in-plane structural performance.

Development of Durability Enhancement Technology for Arc Weldings in Advanced High Strength Steel (AHSS) Chassis Parts (고장력강판 적용 샤시부품의 용접부 내구수명 향상기술 개발)

  • Lee, Kwang Bok;Oh, Seung Taik
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.50-56
    • /
    • 2015
  • In general, discontinuity of metallurgical and structural points of weld zone could decline the fatigue strength. For the lightweight trend, the AHSS application in automotive chassis is in-progress. However, there are few research reports on AHSS welds fatigue strength in especially automotive chassis parts. Therefore, in this study, we evaluated the effects of the factors affecting the AHSS welding fatigue strength. As the result, the stress concentration of weld bead is the most important factor for welding fatigue strength. For the enhancement of welding fatigue strength, we focused on reducing the stress concentration of the welding beads. So, we applied and proved the plasma welding process and GTAW (Gas Tungsten Arc Welding) dressing method. It was verified by uniaxial fatigue specimen, fatigue performance increased from 40 to 60% by applying TIG dressing method compared to the conventional GMAW (Gas Metal Arc Welding). These results could be recommended the enhancement of fatigue performance of AHSS.

Evaluation of Structural Design Enhancement and Sensitivity of Automatic Ocean Salt Collector According to Design of Experiments

  • Song, Chang Yong;Lee, Dong-Jun;Lee, Jin Sun;Kim, Eun Mi;Choi, Bo-Youp
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.253-262
    • /
    • 2020
  • This study provides a comparative analysis of experiments-based enhancements and sensitivity evaluations for the structural design of an automatic ocean salt collector under various load conditions. The sizing variables of the structural members were considered as design factors. The strength and weight performances were selected as output responses. The design of experiments used in the comparative study consisted of the orthogonal array design, Box-Behnken design, and central composite design. The response surface model, one of the metamodels, was applied to the approximate model generation. The design enhancement performance metrics, including numerical costs and weight minimization, according to the design of experiments, were compared from the best design case results. The central composite design method showed the most enhanced design results for the structural design of the automatic ocean salt collector.

Examining Relationship among Intellectual Capital, Internal Collaboration, External Collaboration and Distribution Performance

  • AKIL, Sawir Rifatullah;SOEMARYANI, Imas;HILMIANA, Hilmiana;JOELIATY, Joeliaty
    • Journal of Distribution Science
    • /
    • v.20 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: This study aims to examine the effect of intellectual capital on both internal and external collaboration and its impact on distribution performance enhancement in public sector. Research design, data, and methodology: The study applied quantitative approach with the help of AMOS Structural Equation Modelling. The unit of analysis is the Indonesian local government. The research involved 430 leaders from local government agencies as respondents. Results: This study found that intellectual capital positively influences both internal and external collaboration as well as distribution performance. Furthermore, the current research confirms the different effect of internal collaboration and external collaboration on distribution performance; internal collaboration positively affects distribution performance, while the external one does not. Eventually, internal collaboration mediates the indirect effect of intellectual capital on distribution performance, whereas the external collaboration does not. Conclusions: This study strengthens and complements the lean stream by confirming the role of intellectual capital as critical antecedent of internal collaboration, external collaboration, and distribution performance. Moreover, this research underlines the critical role of internal collaboration as the intercourse which supports distribution performance enhancement in public sector. Lastly, the study highlights the benefits of external collaboration in distribution practice if appropriately and wisely managed.

Evaluation of Flexural Performance of Steel Fiber Reinforced Concrete Beams (강섬유보강 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Shin, Jong-Hack;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.139-145
    • /
    • 2000
  • In this experimental program specimens. designed by the test variables, such as percentage of steel fiber incorporated, were constructed and tested to evaluate the flexural performance of reinforced steel fiber concrete beams. Based on the test results reported in this study, the following conclusions are made. Comparing with the load-displacement relationship of standard specimen, specimen over 0.5% of steel fiber incorporated, could be improved significantly flexural performance, such as capacity, ductility, and crack pattern. As increasing in quantity of steel fiber incorporated(0.5%~2.0%), the flexural strength of each specimen was shown the enhancement of 13%~40% in comparision with the standard specimen BSS.

  • PDF

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

Firms' environmental management activities, organizational capability and performance: An evidence from firms manufacturing and exporting goods (기업의 환경관리 활동, 조직능력 및 성과 간 관계: 제조수출기업을 중심으로)

  • Song, Woo-Yong;Soog, Bong-Suk
    • International Commerce and Information Review
    • /
    • v.13 no.4
    • /
    • pp.411-433
    • /
    • 2011
  • This article investigates the impacts of firms' regulatory compliance and voluntary innovation activities in environmental management on the development of their organizational capabilities and the enhancement of their performance, within the Korean context. The study invokes a structural equation analysis. The results indicate that voluntary innovation activity in response to market pressures makes a significant contribution to the development of firm-specific organizational capability and the enhancement of firms' performance, but regulatory compliance activity does not significantly affect either organizational capability or performance. This capability was also seen to have implications for firm's performance. This article also suggests several policy implications related to the research.

  • PDF

A Study on the Safety Performance of Roadside Barriers by Collision Analysis (방호울타리 안전성능에 관한 충돌해석 연구)

  • Lee, YounghHo;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5558-5565
    • /
    • 2012
  • Roadside barriers are facility for preventing cars from out of path, and 7 classes of barrier are prescribed in criteria of road grades and speed limit, etc. However, overload and overspeed are increased according to improvement of vehicle performance, and falling over frequently occur in vehicle accident related in barriers. Therefore, enhancement of the existing design criteria of roadside barriers is demanded. In this research, vehicle crash simulation was carried out, and the condition for fracture of roadside barriers and vehicle overturn was evaluated in order to verify the defence performance of the barriers, which are SB5 steel barrier and SB6 concrete barrier adapted mainly to highway.

Strength and ductility of biaxially loaded high strength RC short square columns wrapped with GFRP jackets

  • Hodhod, O.A.;Hassan, W.;Hilal, M.S.;Bahnasawy, H.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.727-745
    • /
    • 2005
  • The present study is an experimental investigation into the behaviour of high strength concrete square short columns subjected to biaxial bending moments and strengthened by GFRP laminates. The main objectives of the study are: to evaluate the improvement in the structural performance of HSC short square columns subjected to small biaxial eccentricity when strengthened by externally applied FRP laminates, and to investigate the optimum arrangement and amount of FRP laminates to achieve potential enhancement in structural performance especially ductility. The parameters considered in this study are: number of FRP layers and arrangement of wraps. The load eccentricity is kept corresponding to e/t = 0.125 in two perpendicular directions to the columns principal axes, and the wraps are applied in single or double layers (partial or full wrapping). In the present work, test results of five full scale concrete columns are presented and discussed. The study has shown that FRP wraps can be used successfully to enhance the ductility of HSC columns subjected to biaxial bending by 300%.

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF