• 제목/요약/키워드: STRATOS

검색결과 3건 처리시간 0.019초

STRATOS Titanium Rib Bridge for Chest Wall Reconstruction after Infantile Fibrosarcoma Resection: A Case Report

  • Llalle, Wildor Samir Cubas;Valenzuela, Maisa;Pachas-Canales, Carlos;Vasquez-Arias, Jaime
    • Journal of Chest Surgery
    • /
    • 제54권6호
    • /
    • pp.539-542
    • /
    • 2021
  • Resection and reconstruction of the chest wall for the radical surgical treatment of malignant soft tissue tumors are currently considered a substantial challenge for thoracic surgeons. We present an unusual case of infantile fibrosarcoma with tropomyosin 3-neurotrophic receptor tyrosine kinase 1 fusion in a 13-year-old patient. The surgical treatment consisted of radical resection of the right posterior chest wall and reconstruction with the use of the STRATOS (Strasbourg Thoracic Osteosynthesis System) titanium rib bridge system. The patient had a favorable postoperative course and received respiratory-ventilatory rehabilitation, adjuvant therapy with chemotherapeutic agents, immunotherapy, and radiotherapy.

Constructing Container Shipping Networks with Empty Container Repositioning among Calling Ports - a Genetic Algorithm Approach

  • Shintani, Koichi;Imai, Akio;Nishmura, Etsuko;Papadimitriou, Stratos
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.157-164
    • /
    • 2006
  • This paper addresses the design of container liner shipping service networks by explicitly taking into account empty container repositioning and container fleet size. Two key and interrelated issues of deployments of ships and containers are usually treated separately by most existing studies on shipping network design. In this paper, both issues are considered simultaneously. The problem is formulated as a two-stage problem: the upper-problem being formulated as a Knapsack problem and the lower-problem as a Flow problem. A genetic algorithm based heuristic is developed for the problem. Through a number of numerical experiments that were conducted it was shown that the problem considering empty container repositioning provides a more insightful solution than the one without.

  • PDF

Effect of Terminal Layouts on the Performance of Marine Terminals for Mega-containerships

  • Imai, Akio;Nishimura, Etsuko;Papadimitriou, Stratos
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.165-171
    • /
    • 2006
  • The appearance of over 10,000 TEU containerships (so called Mega-containerships) is determined. In order to operate these ships effectively, the number of these calling ports will diminish, and then feeder ships will transport cargoes from the hub-ports where mega-containerships call to the destination ports. In the hub-ports, handling containers for mega-containerships become huger, thus it is important for terminals to deal with cargo handling as soon as possible. However, the present terminal layout might have the limitation of maximum throughput per time unit. And then the transit time at the ports become longer. Therefore, we investigate the effect on some different terminal layouts with new alternatives. Actually, we discuss the ship-to-berth allocation at some adjacent berths for mega-containerships on three types of terminal layouts. First one is the conventional type consisted by some linear berths, most container terminals in the world are normally this type. Second one is the indented type consisted by linear berths and indented berths which we can handle from both sides of mega-containership simultaneously. Third one is the floating type consisted by linear berths and the floating berth. On this type, mega-containerships can moor between linear and floating berths. The merits of this type are that we can also handle from both sides of mega-containerships simultaneously, and ships can go through between linear berth and floating berths. Thus it is easier for ships to moor and leave berths. Under such assumptions, we examine the numerical experiments. In most cases, the total service times on the indented type are the longest among three types, these on the floating type are the next longer. Those reasons are that these layouts have the differences of berth occupancy obtained by the time and space axes, and whether the precedence constraints of ship service order needs or not.

  • PDF