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Abstract 

 

This paper addresses the design of container liner shipping service networks by explicitly taking into account empty container 

repositioning and container fleet size. Two key and interrelated issues of deployments of ships and containers are usually treated 

separately by most existing studies on shipping network design. In this paper, both issues are considered simultaneously. The problem 

is formulated as a two-stage problem: the upper-problem being formulated as a Knapsack problem and the lower-problem as a Flow 

problem. A genetic algorithm based heuristic is developed for the problem. Through a number of numerical experiments that were 

conducted it was shown that the problem considering empty container repositioning provides a more insightful solution than the one 

without. 
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1. Introduction 

 

This paper addresses the issue of designing service networks for 

container liner shipping while explicitly taking into account empty 

container repositioning and container fleet size. 

The sea container industry is confronted with the problem of 

allocating empty containers. However, load rejection is a very unlikely 

practice in case of shortage of available empty containers because of the 

intensive competition in the market. Consequently, an important 

decision at the operational level is how to transfer empty containers 

and/or lease containers in a timely and efficient manner. The above 

context of the container shipping allows us to distinguish the entire 

shipping network design problem, which includes decisions on the 

voyage itinerary, ship size and calling frequency, into two 

sub-problems: one for the design of networks to serve loaded container 

traffic and the other for networks to assign empty container traffic to 

meet cargo demand. In fact, to the authors’ knowledge, all existing 

studies related to empty container traffic focus only on empty container 

repositioning. The former sub-problem is summarized by Christiansen 

et al. (2004) and Ronen (1983, 1993). The latter is researched by 

Cheung and Chen (1998), Choong et al. (2002), Crainic et al. (2003), 

Gavish (1981), and Imai and Rivera (2001). 

  Separation of empty container movements from full container 

movements is appropriate if all cargo demand is satisfied. Contrary to 

this, if we are able to forgo unprofitable cargo demand whose generated 

revenue is offset by the associated costs of empty container relocation, 

the examination of both full and empty traffic is required in designing 

underlying service networks because of the interaction between full and 

empty traffic. 

In a strategic decision making of shipping network, the container 

fleet size problem, which decides the number of containers required to 

meet future cargo demand, should be considered to design 

containership routing networks. If liner shipping companies provide a 

large fleet of owned containers, then they have a small burden of empty 

container movements. On the other hand, a smaller owned container 

fleet is likely to result in hiring a large number of short-term leased 

containers. From the strategic viewpoint, therefore, the container fleet 

size should be taken into consideration in a shipping network design. 

However, in our previous study (Shintani et al.), the consideration of 

container fleet size was ignored, mainly because shipping operators 

handle an enormous scale of own or long-term leased containers for 

their business and they give up optimizing the container fleet size. Due 

to this reality, the investment costs in the container fleet turn out to be 

the sunk costs. As a result, the operators are free from thinking about the 

container fleet. Thus, this study attempts to optimize the container fleet 

size under the overall optimization of shipping network architecture by 

including the cost of own container fleet. 

In this paper, we propose a design method for containership routing 

networks incorporated with empty container repositioning among 

calling ports and container fleet size, which is modeled on a Knapsack 

problem basis and is reduced to a location routing problem. The 

proposed problem is solved by a heuristic based on genetic algorithms 

(GA), in order to find a set of calling ports, an associated port calling 

sequence, the number of ships by ship size category and resulting 



 
 

cruising speed to be deployed in the service networks, and container 

fleet size, with the objective of profit maximization for a liner shipping 

company. An application of the problem to container transportation in 

Southeast Asia is presented. In the numerical experiments, results are 

examined by various factors, which may affect formation of the voyage 

routes and the proportion of containers in loaded and empty states 

carried on board the ships. 

 

2. Problem description 

 

Most container shipping companies assign a number of ships on a 

particular trade route, which is characterized by two end ports (i.e., 

head-end and tail-end ports) and many intermediate calling ports in 

between. In order to maximize profit, the companies must decide: ports 

to be called and the order of call sequence for the chosen ports. As the 

problem must determine the above decision factor, it is the so-called 

location routing problem. However, in practical situations, a decision 

maker of a liner shipping company builds shipping networks based on 

the rule of thumb and his experiences. Such a decision making process 

does not guarantees the efficient and optimal solution; therefore, the 

decision maker should employ the efficient decision method like the 

one we propose in this paper to maximize the company’s profit with 

considering empty container repositioning and container fleet size. In 

most existing voyage routes, all ports to be called on the way from the 

head-end port to the tail-end port (referred to as outbound direction) are 

not always called on the way back to the head-end port (referred to as 

inbound direction), as shown in Fig. 1, where ports 1 and 6 are the 

head-end and tail-end ports. 

The model maximizes profit by forming a single route, which does 

not necessarily call at all the ports in the trade area. The model assumes 

a weekly cargo demand for all origin/destination pairs. Other 

assumptions are as follows: 

(i) The demand for empty containers at a port, at a specific point of 

time, is the differential of the total traffic originating from the port 

and the total loaded container traffic arriving at the port for that 

specified time period. 

(ii) All the cargo traffic emanating from a port is satisfied if that port 

is selected on the route. 

(iii) If a sufficient container quantity is not available at a port, the 

shortage is fulfilled by leasing containers. 

(iv) The total loaded and empty containers transported by a ship must 

not exceed the ship’s capacity. 

  As mentioned, this model assumes that the shipping line does not 

necessarily call at all ports in the trade area. However, in reality, the line 

priorities and/or constraints for selecting calling ports. For instance, the 

line has priority customers in a specific port and therefore it must call at 

that port, while this decision does not result in a large profit from a 

narrower viewpoint. However, such a situation makes the problem 

rather complex; therefore we assume an ideal decision-making. 

 

 

 

 

 

 

 

 

2.1 Formulation 

 

The problem of deciding an optimal route (i.e., choosing an optimal 

set of calling ports and associated calling sequence of ports), can be 

formulated as a Knapsack problem and a Flow problem. The Knapsack 

problem approach has been widely used not only in ship scheduling 

problems but also in other general scheduling problems. 

  The problem consists of two parts. One part is the lower-problem, 

which identifies the optimal calling sequence of ports for a specific 

group of calling ports. The other is the upper-problem, which is reduced 

to the Knapsack problem and chooses the best set of calling ports that 

associate to the calling sequence found in the lower-problem. The 

upper-problem [UP] and the lower-problem [LP] may be formulated as 

follows: 

[UP] Maximize k

Vk

kZ ρ∑
∈

         (1) 

  subject to ∑
∈

=
Vk

k 1ρ           (2) 

 { }1 ,0∈kρ  Vk ∈∀ ,  (3) 

where V is the set of groups of calling ports, each of which associates 

the optimal voyage route that is identified by the [LP]; and kρ =1 if the 

route associated with a candidate group of calling ports k  is selected, 

=0 otherwise. 

Given a set of calling ports, [LP] constructs the optimal calling 

sequence, which associates with it the resulting profit as the objective 

function value kZ . For simplicity in formulating [LP], the objective 

function is denoted as Z . Then, [LP] may be formulated as follows: 

[LP]  Maximize ( ) ( ) ( )yyy HPCRZ −−−=  (4) 

  subject to  ∑ ∑
∈ ∈

=
Nj Nj

jiij yy  Ni∈∀ , (5) 

  ∑∑
∈ ∉

≥
Si Sj

ijy 1
 NS ⊂∀ , (6) 

  { }10  ,yij ∈   Nj,i ∈∀ , (7) 

  { }N,...,jN,...,iyij 1 ;1 ∈∈=y  (8) 

where N  is the set of calling ports for Vk∈ ; S  is a nonempty 

subset of N ; ( )⋅C  is the shipping cost function of selected arcs 

( )ji, ; ( )⋅H  is the holding cost function of own container fleet; 

( )⋅P  is the empty container related (or leasing) cost function of  

Figure 1. Example of ship’s itinerary 
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selected arcs ( )ji, ; R  is the revenue associated with Vk∈ ; and 

ijy =1 if a ship sails on arc ( )ji, =0 otherwise. 

The decision variables are ijy s. The objective function (4) is the 

maximization of the total profit. Constraint set (5) ensures that a calling 

ship at a port must depart from that port. As shown in Fig. 1 where it is 

envisaged that N  contains all ports 1 through 6 except for 2, the route 

must connect all the ports in N . Constraints (6), therefore, guarantee 

that all the ports are connected each other through the formed route. The 

constraints, in other words, guarantee that there are more than one 

directed arc between a node in any subset of ports, S , and the one not 

in S , resulting in that there is no such sub-tour that does not visit all 

the nodes in N . Eq. (8) defines a vector y  to be comprised of ijy s 

for a formed voyage route. Also, the calling sequence is associated with 

ijy s. 

Given a freight rate for the origin-destination port pair, the revenue 

generated is defined by the set of calling ports with the assumption that 

the published rate is applied independent of the cargo traffic itinerary 

depending of the resulting voyage route. R  is defined as follows: 

 ∑∑
∈ ∈

=
Ni Nj

ijij xFRR
 (9) 

where ijFR  is the freight rate of cargo (US$/TEU) from ports i  to 

j  and ijx  is cargo traffic (TEU) from ports i  to j , which is 

associated with origin-destination pair of calling ports for [LP] since we 

assume that a ship undertakes all the cargo demand emanating from 

ports to be called. 

The shipping cost depends on a variety of ship factors and 

transportation demand on the route. In this paper, therefore, the shipping 

cost is expressed as the sum of the costs regarding arcs on candidate 

routes, which are associated with ijy s. In the following subsections (2) 

– (4), ijy s are not explicitly utilized in each cost formulation. This is 

because the costs are composed, based on a specific shipping route that 

is assumed to have been constructed already by determining ijy s.   

Notice that the costs (except the holding cost of own container fleet) 

and revenue described above are a multiplication of the profit, the cost 

per voyage, and the cost of a deployed ship. This enables us to evaluate 

only the revenue and those cost per ship. In the numerical experiments, 

the total revenue and costs, in order to be accorded as values per year,  

 

 

 

 

 

 

 

 

 

 

 

 

 

are multiplied by the number of voyages. 

In the following subsections, we provide relevant cost functions. See 

Imai (1989) and Shintani et al. for details. 

 

2.2 Shipping cost function 

 

The shipping cost is made up by two components: operating and 

capital costs. In general, the capital cost includes the cost regarding the 

ship itself, while the operating cost includes the costs of fuel, lubricant 

and port entry. These costs are defined as below: 

CPCSC +=  (10) 

FC CCCS +=  (11) 

HE CCCP +=  (12) 

where CS  is the ship related costs; CP  is the port related cost; 

CC  is ship’s other costs, which are not incurred in proportion to the 

cruse distance ( PIRDMC CCCCCC ++++= ); DC  is the 

ship’s depreciation cost; EC  is the port entry cost; F
C  is is 

the fuel and its related cost; 
H

C  is the cargo handling cost; 
IC  is 

the insurance cost; 
MC  is the crew cost; 

RC  is the interest; and 
P

C  is the repair and maintenance cost  

 

2.3 Leasing cost function 

 

  Liner shipping companies are generally faced with an enormous 

level of imbalanced cargo traffic between trade sections. This 

imbalance creates some costs (referred to as leasing costs) as a number 

of unproductive tasks have to be performed such as the reposition of 

empty containers from excessive points to demand points, storage of 

empty containers in place for future demand and leasing containers to 

meet urgent cargo demand. For the task of container repositioning we 

assume that no costs are associated with it, because it is performed 

using the excess capacity on their own ships. 

Fig. 2(b) shows the virtual calling sequence, which was converted 

from the original calling sequence of Fig. 2(a). The virtual calling 

sequence includes virtual nodes that represent nodes to be visited more 

than once in the original calling route. The set of nodes in the virtual 

sequence is denoted by NV . 

(a) Original calling route 
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(b) Corresponding virtual calling sequence 

Figure 2. Calling sequence transformation 

1�2�3�4�5�6�7�8 

N={1, 4, 5, 6, 9} 

Ports in calling sequence                 

New port numbers         

NV={1, 2, 3, 4, 5, 6, 7, 8} 

1�4�5�6�9�5�4�1 

1�2�3�4�5�6�7�8 



 
 

The leasing cost function, P , is given by the following equation 

where the virtual calling sequence shown in Fig. 2 is assumed: 

  ∑
∈

=
NVi

iiLSaP  (13) 

 { }0,PDmaxS iii −=   NVi∈∀ , (14) 

 ∑
∈

−=
iBj

jiii wSLS
    NVi∈∀ , (15) 

 
( )

{ }

CAPwx
iBp Lq

pqpq
i i

≤+∑ ∑
+∈ ∈

  NVi∈∀ , (16) 

where ia  is the short-term leasing cost at port i (US$/TEU); iLS  

is the number of lease containers at port i (TEU); NV is the set of 

nodes in the virtual calling sequence; iB  is the subset of NV , 

which are called before port i ; iL  is the subset of NV , which are 

called not before port i ; iD  is the cargo traffic departing from port 

i ; iP  is the cargo traffic destined for port i ; iS  is the number of 

demanded containers at port i ; jiw  is the number of empty 

containers carried from ports j  to i ; and CAP is the ship 

capacity.   

Eq. (14) defines the shortage of containers. If ii PD −  is negative, 

i.e., the number of containers to be requested is less than the number of 

available containers, iS  is set to zero; otherwise iS  is set ii PD − . 

Variable iD  and iP  are associated with cargo demand emanating 

from ports to be called. Eq. (15) defines the number of containers to be 

leased. Inequality (16) guarantees that empty containers are transported 

in an excessive space of a ship. Note that jiw s are auxiliary variables, 

which are fixed when variables ijy s are fixed. 

 

2.4 Holding cost function of own container fleet 

 

Once shipping companies obtain a fleet of containers they must, in 

general, keep them in use for more 10 years. However, it is practically 

impossible to take into account future empty movements, to determine 

the container fleet size. From this, given a weekly cargo demand as 

mentioned in section 4, we can roughly calculate the own fleet size and 

it’s holding cost with a distribution of full and empty containers for a 

candidate route. Also, we assume a container departure from a port to a 

shipper or consignee and its return from the customer occur when a ship 

calls at the port. 

A flow conservation at a port is given by eqs. (17) and (18), 

respectively. In a case of own container shortage, we lease containers to 

meet all the cargo demand at port i . 

 '
iiii STGRA ++=  NVi∈∀ , (17) 

 
iiiii LSSTOAF +−−=  NVi∈∀ , (18) 

 { }0,max iii DPE −=   NVi∈∀ , (19) 

 ∑
∈

−=
i
Lj

ijii wEST
   NVi∈∀ , (20) 

where 
iA   is the number of empty containers available in port i  

(TEU); 
iE  is the number of excess containers at port i ; iG  is the 

number of empty containers coming by the ship to port i  from others; 

iF  is the number of empty containers for the next shipments; 
iO  is 

the number of empty containers going by ship from port i  to others; 

iR  is the number of empty containers returning from consignees to 

port i ; 
iST  is the number of containers stored at port i ; '

iST  is 

the number of empty containers stored in port i  from previous 

planning period. Both eqs. (17) and (18) contain the excessive empty 

containers '
iST  and 

iST , respectively. The proposed model only 

reflects the container flow during one voyage, but the flow conservation 

must be kept over multiple voyages from practical viewpoint. This 

enforces '
ii STST =  and this equality allows us to reduce the 

container fleet size by ∑ i iST
. However, a certain amount of 

iST  

should be held as safety stock. (i.e., 
iST  is added to eq. (24)). Eq. (19) 

defined the excess of containers. Eq. (20) specifies the number of 

containers to be stored at a port i . 

The holding cost function of own container fleet, H , is made up by 

two components: retaining cost of own container fleet and storage cost 

for the safety stocks at each port. These costs are defined as below: 

 ∑
∈

+=
NVi

ii
P BSbTFCH  (21) 

 ( )∑
∈

+=
NVi

ii BSOFTF  (22) 

 iiiii DLSOFOF +−+=  NVi∈∀ , (23) 

 iiii STFbrBS +=  NVi∈∀  (24) 

where PC  is the average retaining cost of container per year 

(US$/TEU/year); ib  is the storage cost per year at port i  

(US$/TEU/year); TF  is the total own fleet size (TEU); iOF  is the 

own fleet size at port i  (TEU) and iBS  is the number of safety 

stocks at port i  (TEU); ibr  is a rate for safety stock at port i .  

Eq. (22) defines the total own fleet size adding the safety stocks. Eq. 

(23) defines a distribution of full and empty containers at port i . The 

turnaround time is assumed 7 days as a container is delivered from a 

port to shippers and returns from the shippers to port, while the required 

number of containers must be equal to cargo traffic destined, iD . In 

eq. (24) given a rate for safety stock, the number of safety stocks is 

defined as a multiplication of the rate and the number of next shipments 

at specific port. We assume that ibr , a rate for safety stock at port i , 

is set as 01.bri =  for each port. We assume that ibr , a rate for 

safety stock at port i , is set as 01.bri =  for each port. We establish 

iBS , because in general, shippers require empty containers much 

earlier than the scheduled time of empty container delivery for their 

export and also because empty containers to deliver to shippers may be 

short due to delayed arrival of ships that bring empty containers to the 

ports. 

 

3. Solution procedure 

 

This section describes a solution procedure for this problem, which is 

categorized as a combinatorial optimization problem; therefore efficient  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exact algorithms are unlikely to exist. From this point of view, this 

paper employs a heuristic method GA to nearly optimize the solution. 

 As mentioned in the previous section, the problem is modeled by two 

sub-problems simply because of difficulty in the problem formulation. 

However, since the GA directly generates solutions for the problem as 

will be shown later, we identify the solution for the problem at a time, 

not by using a sequential process such as finding the solution of the 

lower sub-problem [LP] and then the one of the upper sub-problem 

[UP]. We do not describe the details of our GA procedure because of its 

popularity. 

 

3.1 Genetic representation 

 

Fig. 3 illustrates the corresponding formation of Fig. 1. The length of 

the string of digit is the number of candidate calling ports, regardless of 

being selected or not, from one port to another including intermediate 

ports on the way to the latter and those on the way back to the former. 

Note that similar to calling formation described in section 3.3, a specific 

port is assigned different numbers whenever called in the entire voyage. 

In Fig. 3, the ports, which are not all called necessarily, on the way back 

from ports 6 to 1 of Fig. 1 have the numbers 7 through 11 associated 

with them. 

Therefore, for example, port 5 in Fig. 1 has two different numbers 5 

and 7 in Fig. 4. An arc from ports m  to n  as shown in Fig. 1 is 

presented as n  is housed in m th locus. Such linkages between two 

calling ports are chained to each other to form an entire voyage. Loci, 

which are equivalent to uncalled ports, house any port numbers 

arbitrarily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Fitness and selection 

 

 A fitness value reflects the goodness of an individual, compared 

with the other individuals in the populations. In this study, a fitness 

value corresponds to a value of the objective function, namely, the 

company’s profit. We adopt two selection methods: an elitist-preserve 

strategy and a roulette-wheel selection. The former method is used 

when the two higher rank individuals are unconditionally preserved to 

the next generation and the latter is employed to randomly pick up a 

superior individual from the remainder. 

 

3.3 Crossover 

 

  The crossover scheme should be capable of reproducing a new 

feasible solution (or offspring) by combining good characteristics of 

both parents. A generated offspring should be presented a round trip on 

a complete route. In order to keep the feasibility, the crossover operation 

performs in the following manner (Fig. 4 shows an example with a new 

offspring created by crossover and presents the resulting routes): First, 

define port 1 as the starting port of a voyage. Focusing on digits in the 

locus corresponding to the origin port in the two selected parents, select 

a digit arbitrarily from them and store the selected digit in that locus of 

offspring. Second, focusing on digits, from the parents, located in a 

locus, which is defined by the digit just housed in offspring; choose 

either digit randomly and store it in the same locus of that offspring. 

Repeat this procedure until a round trip is completely formed. Finally in 

loci equivalent to unvisited ports, digits from either of the parents in the 

corresponding loci are stored. Furthermore, if an infeasible 

chromosome is generated, perform crossover procedure from the 

(5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Chromosome: 3 5 4 5 6 8 11 7 11 9

Figure 3. Chromosome representation 

(5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Parent1: 3 5 4 5 6 8 11 7 11 9 P1: 1 3 4 5 6 4 5 1

Parent2: 4 4 2 6 6 9 9 11 8 11 P2: 1 4 6 3 4 1

Offspring1: 4 4 2 6 6 8 11 7 8 11 O1: 1 4 6 4 5 1

Figure 4. Example of crossover processing 

(5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Offspring1: 4 4 2 6 6 8 11 7 8 11 O1: 1 4 6 4 5 1

Offspring1': 4 4 2 6 6 8 10 7 8 11 1 4 6 4 5 2 1O1':

Figure 5. Example of mutation processing 



 
 

beginning once again. 

 

3.4 Mutation 

 

Fig. 5 presents an example of processing of the mutation operator 

and associated routes. Mutation randomly chooses a locus and houses a 

digit in that locus that is chosen randomly from any of the ports in the 

service area. If an infeasible chromosome is generated, operate 

mutation again. 

 

4. Computational experiments 

 

This section presents an application of the problem to container 

transportation in Southeast Asia. We considered a number of impact 

factors to the formation of a shipping route. In order to assess the 

solution quality of the GA, we compared approximate solutions by the 

GA with the optimal solutions of the same problems being solved by 

the Brute force method. Due to the computational limitation of these 

methods, we tested small problems with 5 – 8 ports in the trade area. As 

a result, the GA found the optimal solution for every problem. 

Based on preliminary experiments, parameters of the GA were set as 

follows: population size= 300, maximum number of generations= 200, 

crossover rate= 0.9 and mutation rate= 0.08. 

  

4.1 Parameter settings for the experiments 

 

Settings of major parameters for the experiments are as follows: (i) 

Potential calling ports (20 ports): Tokyo, Yokohama, Shimizu, Nagoya, 

Osaka, Kobe, Moji, Hakata, Busan, Shanghai, Keelung, Kaohsiung, 

Hong Kong, Ho Chi Minh, Manila, Leam Chabang, Bangkok, Port 

Klang, Jakarta and Singapore; (ii) the time horizon: 52 weeks; (iii) the 

calling frequency per year: 52; (iv) the turn around time of a ship: less 

than or equal to 21 days; (v) ship sizes: 500, 1000, 1500, and 2000 

TEUs; (vi) the handling cost at each port: US$200/TEU; (vii) the 

short-term leasing cost at each port (
ia ): US$300/TEU; and (viii) the 

storage cost at each port (
ib ): US$0.5/TEU/day. 

  We obtained data for setting parameters (vi) – (viii) based on surveys 

with shipping and stevedoring companies as well as port authorities in 

Japan. 

 

4.2 Case studies 

 

Throughout the experiments the sensitivity of some factors was 

examined to determine their influence on the solution. The first factor is 

the impact of the leasing cost coefficient ( ia ) (i.e., leasing cost). 

Companies consider the cost related to empty containers as very 

seriously nowadays. It is likely that each company assigns a different 

value to the repositioning cost. Thus, we consider three levels for the 

empty container-related cost such as: basic cost, twice as much as the 

basic cost and four times as much. 

The second factor is the impact of taking empty containers into 

consideration. In other words, we look into the difference in the profit 

gained by the two proposed solutions: the one identified by the problem 

we propose (case 1) and the other by the problem without consideration 

of empty container movement (case 2). Calculations for case 2 were 

also performed by GA, but the problem employed for them did not take 

into account empty container distribution (i.e., variable ijw s are not 

included in the formulations), the associated empty container-related 

costs (or leasing costs) and the holding cost of own container fleet, in 

the objective function. Note that the problem without empty distribution 

is hereafter referred to as based problem. After the based problem was 

solved, the necessary empty container traffic was distributed in the 

shipping network, whilst relevant constraints were satisfied, and 

relevant leasing costs and the holding cost of own container fleet were 

added to the profit of the resulting objective function value. The profit 

resulting from the above process is the one for case 2. It seems that in 

order to keep the sailing schedule, ships must increase cruising speed if 

the handling time increases, since more empty containers are handled 

due to the resulting inefficient empty traffic. At the same time, 

increasing movement of empty containers may also raise the operating 

costs and the holding cost of own container fleet, for the same reason. 

 

4.3 Experimental results 

 

Port-to-port traffic of loaded containers per week is estimated by 

using several data sources such as the United Nations (1998) and the 

official home page of each port, etc. Table 1 shows the weekly 

throughput of import and export containers at each port based on the 

estimated traffic. 

We first look into the best ship size in TEUs. We computed a specific 

problem sample by GA 50 times with varying the initial arrangement 

of genes. Fig. 6 portrays the convergence of profit in average of 50 runs 

during genetic iterations by four different ship sizes. For each ship size, 

we assumed three different levels of leasing cost (indicated by x1, x2 

and x4). While there are no significant differences in profit by the 

different leasing cost levels, as expected the highest profit is achieved 

with the employment of the least cost ship. The most profitable ship 

size is 1000TEUs. 

Table 2 illustrates comparisons between cases 1 and 2 by the most 

profitable ship size, 1000TEUs, showing the 5 best solutions for each 

case. The best solutions in case 1 are centered on the number of 

deployed ships= 3, whilst the figures may be fractional. As mentioned 

before, case 2 solutions are calculated by adding empty container 

distribution to the solutions of the based problem and the holding cost 

of own container fleet. Note that in case 2, the based problem does not 

take into account empty container distribution and therefore transports 

more loaded containers. As expected, case 1 results in being more 

profitable than case 2, as it consists of less revenue but also of much 

less shipping, the leasing and holding costs. Thus, case 1 provides a 

smaller container fleet than case 2. Interestingly, case 2 has a com-  
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 Figure 6. Convergence of GA solution by different ship size 

 

Port 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Import 879 906 196 382 282 1008 196 288 1925 779 325 595 1634 112 382 83 913 573 175 1338

Export 1076 1181 271 790 506 1533 260 382 1467 914 417 539 392 97 624 69 901 548 92 912

1: Tokyo, 2: Yokohama, 3: Shimizu, 4: Nagoya, 5: Osaka, 6: Kobe, 7: Moji, 8: Hakata, 9: Busan, 10: Shanghai, 11: Keelung, 12: Kaohsiung,

13: Hong Kong, 14: Ho Chi Minh, 15: Manila, 16: Leam Chabang, 17: Bangkok, 18: Port Klang, 19: Jakarta, 20: Singapore

 Table 1. Weekly throughput at ports (TEUs) 

 Table 2. Comparison between cases 1 and 2 by 1000TEU ship 

 Shipping Leasing Holding Crusing Fleet

cost cost cost* speed size

(xUS$10
4
) (xUS$10

4
) (xUS$10

4
) (xUS$10

4
) (xUS$10

4
) (knots) (nautical miles)

1 1 3759.0 10394.0 6298.8 1.9 334.3 20.7 3 6672

2 3568.4 10417.7 6489.3 2.9 357.1 20.7 3 6385

3 3566.5 10229.9 6312.1 2.6 348.7 20.3 3 6365

4 3550.7 10461.0 6542.7 3.7 363.9 20.8 3 6283

5 3509.3 10222.3 6350.4 4.7 357.9 20.3 3 6365

2 3 3307.6 11034.2 7336.8 8.7 381.1 22.4 3 6379

4 3216.0 10729.5 7129.6 11.7 372.2 22.3 3 6590

5 3202.5 10761.1 7175.6 10.6 372.4 22.4 3 6635

2 3024.9 11151.0 7686.4 12.9 426.8 24.0 3 6767

1 3019.7 11488.2 8032.0 7.1 429.4 24.3 3 6640

Distance

1-2-3-4-17-20-6-2-1

1-4-6-20-17-6-2-1

1-2-4-17-20-6-5-2-3-1

Revenue

1-2-17-20-15-11-2-1

1-2-5-16-17-20-11-5-2-1

1-2-5-17-20-11-5-2-1

The calling sequenceSol.#case#
Profit

1-2-13-20-17-6-2-1

1-2-5-11-14-17-20-11-5-2-1

1-2-5-11-20-17-5-2-1

1-2-3-11-20-17-6-2-1

1: Tokyo, 2: Yokohama, 3: Shimizu, 4: Nagoya, 5: Osaka, 6: Kobe, 7: Moji, 8: Hakata, 9: Busan, 10: Shanghai, 11: Keelung, 12: Kaohsiung,

13: Hong Kong, 14: Ho Chi Minh, 15: Manila, 16: Leam Chabang, 17: Bangkok, 18: Port Klang, 19: Jakarta, 20: Singapore

*: the holding cost of own container fleet



 
 

plicated and inefficient empty container distribution. As the based 

problem has not considered empty traffic, a lot of loaded containers are 

transported due to the fact that no ship space is reserved for empty 

container transfer in the solution of the based problem and consequently 

a huge shortage of empty containers is observed. This shortage is 

covered through expensive leasing. 

 

5. Conclusions 

 

This study addressed the problem of container liner shipping network 

construction by explicitly taking into account empty container 

distribution and container fleet size. Whilst there is a huge literature on 

ship routing and scheduling problems, few studies treat the design of 

container shipping network and none of them incorporate the problem 

of repositioning and leasing of empty containers, and decision of 

container fleet size. In this paper, this problem was dealt with by 

forming a shipping network with the assumption that necessary empty 

container repositioning is performed using spare space on ships 

operated and containers are leased when empty containers do not arrive 

at the demand points in time. In the solution procedure stage, GA is 

employed for implementing a solution method for the problem. 

Based on the computational experiments that we conducted, the 

following conclusions can be reached: Due to the empty container flow 

and decision of container fleet size that was treated in this problem, the 

handling time and associated costs at ports are smaller than those by 

using the based problem. As a result, the problem with empty 

distribution results in being able to cruise at a slower speed due to the 

efficient empty container distribution and thus save considerably the 

fuel costs. Moreover, the problem with considering the container fleet 

size reduces the primary investment cost. 

The proposed approach is very useful in assessing potential shipping 

networks from both strategic and tactical viewpoints, since the design of 

the container shipping network without consideration of the empty 

container traffic eventually becomes very costly due to less efficient 

empty container distribution associated with the resulting network. 

In this study, a uniform volume of cargo demand in each calling port 

is assumed for every voyage whilst there are seasonal cargo fluctuations 

in cargo demand over several voyages in practical situations. Therefore, 

the consideration of such seasonal fluctuations seems to provide a more 

insightful solution in terms of trade-offs of the leasing and holding costs. 

A mitigation of this restriction may be an interesting topic for future 

research. 
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