• 제목/요약/키워드: STRAIN

검색결과 22,187건 처리시간 0.045초

퓨리에 변환 격자법과 화상 처리를 이용한 스트레인 해석 (Strain Analysis using Fourier Transform Grid Method and Its Image Processing)

  • 양인홍
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.165-171
    • /
    • 1992
  • 진동하는 구조물을 설계할 때에는 그 구조물 중의 Strain이나 응력이 최대가 되는 장소나 시각을 알 필요가 있다. 지금까지의 Strain 해석에는 Strain gauge 등과 같은 접촉법이 많이 이용되고 있다. 더우기, 접촉법으로 대변형 진동을 하는 물체의 Strain을 해석하는 것은 곤란하다. 최근에는 비접촉법으로 Strain 분포를 해석하기 위해 화상처리를 이용한 계측이 행하여지고 있다. 이들의 Strain 분포를 측정하는 광학적인 방법으로는 격자법, Moire법, 홀로 그랩픽 간섭법 등이 있다. 특히 대변형이나 대Strain을 해석하는 데에는 격자법이 많이 이용되고 있는데, 종래의 격자법은 Data를 처리하는 데에 많은 시간과 노력이 소요되고 작업도 매우 복잡하며, Data의 수도 제한이 되어서 구조물의 분포의 해석 정도에 큰 영향을 미치게 된다. 본 논문 에서는 스테레오법을 이용해서 2차원 격자를 붙인 시료표면의 각 점의 3차원 좌표를 계측하고, 또 Fourier 변환 격자법을 적용하여 촬영된 2차원 격자의 화상에서 위상치를 구한다. 그리고 물체의 변형 전후의 대응 관계의 화상에서 3차원 형상과 Strain 분포를 해석하는 방법을 제안한다. 이 방법을 이용하면 진동하는 구조 물의 3차원 변위분포, Strain 분포를 정도 좋게 해석할 수가 있다.

  • PDF

Deformation Analysis of Micro-Sized Material Using Strain Gradient Plasticity

  • Byon S.M.;Lee Young-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.621-633
    • /
    • 2006
  • To reflect the size effect of material $(1\sim15{\mu}m)$ during plastic deformation of polycrystalline copper, a constitutive equation which includes the strain gradient plasticity theory and intrinsic material length model is coupled with the finite element analysis and applied to plane strain deformation problem. The method of least square has been used to calculate the strain gradient at each element during deformation and the effect of distributed force on the strain gradient is investigated as well. It shows when material size is less than the intrinsic material length $(1.54{\mu}m)$, its deformation behavior is quite different compared with that computed from the conventional plasticity. The generation of strain gradient is greatly suppressed, but it appears again as the material size increases. Results also reveal that the strain gradient leads to deformation hardening. The distributed force plays a role to amplify the strain gradient distribution.

인장-전단하중을 받는 점 용접재의 변형률 분포 특성 평가 (Evaluation on the Properties of Strain Distribution of the sopt welding specimen under tensile-shear load)

  • 김덕중
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.113-118
    • /
    • 1999
  • In order to evaluate strength of spot welded joint, at first it is importent that we should know strain distribution near nugget zone. During loading, in HAZ, compressive strain increase with Increase of load, but in nugget zone tensile strain increase. During unloading, on the other hand, even through the decreases, the strain variation is not almost appeared in nugget zone and HAZ. In nugget boundary zone, the strain range increases continuously along with load increase on outer surface, but the strain increases continunously and decreases rapidly beyond yield strength on inner surface. In this paper, strain distribution are measured in inner and outer surface with variation of thickness and load under tensile-shear load. Tensile-shear strength increased as with increase of specimen thickness. As for thickness increase rates are 25%, 50%, 100%, and 150%, tensile-shear strength in crease rates are 40%, 81%, 130% and 228%.

  • PDF

퀜칭-템퍼링한 SM45C강의 저주기 피로에 있어서 초기단계 응력진폭 거동에 미치는 평균변형의 영향 (Influence of mean strain on the behavior of early stage stress amplitude in low cycle fatigue of quenched and tempered SM45C steel)

  • 최재영;이내성;김창주;김경현
    • 한국기계연구소 소보
    • /
    • 통권18호
    • /
    • pp.169-175
    • /
    • 1988
  • 저주기 피로에 있어서 초기단계의 응력진폭 거동에 미치는 평균변형의 영향을 정량적으로 검토하였다. 그 결과 평균변형이 압축상태인 경우는 반복수의 증가에 따라 반복변형지수 n'와 반복변형계수 C'는 감소하였으며 평균변형이 0%와 인장상태인 경우는 그 반대였다. 또한 동적인 항복강도 $\delta_(yc)$는 평균변형이나 반복변형에 관계없이 일정하였다.

  • PDF

AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향 (The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy)

  • 고병철;박도현;유연철
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

Welding deformation analysis based on improved equivalent strain method considering the effect of temperature gradients

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.157-173
    • /
    • 2015
  • In the present study, the existing equivalent stain method is improved to make up for its weaknesses. The improved inherent strain model is built considering more sophisticated three dimensional constraints which are embodied by six cubic elements attached on three sides of a core cubic element. From a few case studies, it is found that the inherent strain is mainly affected by the changes in restraints induced by changes of temperature-dependent material properties of the restraining elements. On the other hand, the degree of restraints is identified to be little influential to the inherent strain. Thus, the effect of temperature gradients over plate thickness and plate transverse direction normal to welding is reflected in the calculation of the inherent strain chart. The welding deformation can be calculated by an elastic FE analysis using the inherent strain values taken from the inherent strain chart.

스프레이코팅 방식으로 제작된 단일벽 탄소나노튜브막 스트레인센서 (Spray-coated single-wall carbon nanotube film strain sensor)

  • 박찬원
    • 산업기술연구
    • /
    • 제32권A호
    • /
    • pp.29-33
    • /
    • 2012
  • We demonstrated the viability of fully microfabricating SWCNT(single-wall carbon nanotube) film strain sensors for force and weight sensing. Our spray-deposited SWCNT film strain sensors showed good linearity over a range from 0 to 400 microstrain, and much higher sensitivity compared to commercial metal foil-type gauges. The number of grids and the thickness of the SWCNT film were found to have a significant effect on the strain sensing properties of the SWCNT film gauges. A strain sensing methode for the CNT-based strain gauges was also investigated using a binocular type beam load cells. Preliminary results indicate that the microfabrication method shown here is promising for developing a commercial strain gauge using a spray-coated SWCNT thin film. In the near future, various studies will be performed to further enhance the properties of the spray-coated SWCNT film strain sensors.

  • PDF

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

SCM 440 강재의 동적 재결정 조직 변화에 관한 연구 (The Evolution of Dynamically Recrystallized Microstructure for SCM 440)

  • 한형기;유연철
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF