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Strain Analysis using Fourier Transform Grid Method

and Its Image Processing

In-Hong Yang*
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1. INTRODUCTION

In an optimal design of structure,
important to know the shape and strain
distribution of an object. It is, however, dif-
ficult to measure the shape and strain of tender
objects or much deformed objects using contact
methods. Therefore the grating method using
image processing which is not contact method
has been introdued. Some grating methods using
image prosessing were proposed to analyze
either shape or strain of objects. In the
conventional grating methods using image proc-
essing technique, the position of a grating lines
is measured in an integer of pixels.

For interpolating data between grating lines,

it is very
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Sciammarella et al'.have developed a method
of analyzing the phases of mismatched fringes
by using one-dimensionai Fourier transform.
Moreover, Takeda and Mutoh? have presented
the Fourier transform profilometry. Morimoto et
al*® have developed a new moire method by
using the first harmonic of the Fourier spectrum
of the deformed grating image to analyze the
strain distribution on the surface of the object.
This method is called the Fourier transform grid
method (FTGM). For analysis of the strain on
the surface of the object, a two-dimensional
grating pattern has been made on the surface
of the object.

Using the FTGM, the positions of the grating
lines are measured in decimal pixels by



analyzing the phase distribution so that the
accuracy is higher.

In this paper, the three-dimensional shape and
surface strain distribution of a vibrating rubber
plate are measured using a stereoscopic method.
The two-dimensional grating is drawn on the
surface of the specimen. The gratings are
recorded from two different directions by two
CCD cameras and recorded by two video
recorders. Each pair of corresponding points in
the two grating images observed from two dif-
ferent directions are matched using the two-
dimensional Fourier transform grid method. After

that, using the stereoscopic method, the 3D
shape and surface strain of the specimen are
calculated. Consecutive images make it possible
to analyze the dynamic behavior of vibrating
objects.

2. THEORY OF FOURIER TRANSFORM
GRID METHOD

In order to analyze a two-dimensional grating
image, a cross-grating with orthogonal lines as
in Fig. 1 is used. The brightness
intensity function of a two-dimensional cross-
grating can be expressed as the product of two
single-grating intensity functions. One single-
grating normal to the x-axis denoted as x-
grating, and another single-grating normal to
the y-axis denoted as y-grating, are utilized for
displacement measurement the x-and y-
directions, respectively. The intensity function
g(x,y) of the cross-grating in the Fourier series
expansion is

shown

in

[ele] 00
g(x,y) = Z Z im,n(Xy.Y)eX'P
m=-00 p=-00
{J2mmwsx+ j2rmwyy } (1)
where i.,. is the coefficient of the harmonic
of the order (m,n), m and n are integers, j
is the imaginary unit, w« and w, are

frequencies of the x-and y-gratings, res-
pectively. The Fourier transform of g(x,y) is
expressed in the following equation.

FAE

166

[o o] 00

G(Ox,Qy)= J f g(x, y)exp{-j2n(Cxx, Qyy) }dxdy
-0 j—00
o 00

z Z Im, n(Qx—mwx,Qy-nwy)
A=—-00 n=-00

where f1x and {, are in the x-and vy-
directional frequencies respectively. Figure 2
shows a schema of the two-dimensional Fourier
spectrum of the grating. Each circle shows the
region where the harmonic of the order (m,n)
exists. In order to seperate into the x and y
terms containing the coresponding dispalcement
component, respectively, only the first harmonic
is extracted and shifted. If each of the first
harmonic the x-and vy-directions
overlapped by the other harmonics, it can be
extracted, respectively. Then the one-dimensional
analysis The (1,0)
harmonic indicated with oblique lines in Fig. 2
is extracted by filtering, and its inverse Fourier

in is not

order

in the x-direction.

transform is computed as the following equation.

oo [oo
i1,0(x,y)= J J L1, o (Qx—wx*+Qy—wy rexp
-00 }—-00
{=32m(Qex+Qyy) }dQxddy (3)
=Cyoexpl [y (x,¥) |
The real and imaginary parts of Eq. (3) are
Re{i1,o(x,¥)} = C1,oCOS{Ox(x,¥)}
Im{it,o(x,y)} = C1,0SIN{By(x,y)} @)
Each equation shows a sinusoidal fringe

pattern. The image of this equation shows only

the x-gration. The phase distribution fy(x,y) is
obtained by calculating

Te{is,o(x,y)}

Re{ii.o(x,y)}
Similary, using the y-directional first hamonic

6x{(x,y)} = arctan (5)

L, . (x,y) the phase distribution g.(x,y) of the
y-graying is obtained. The position of the point

(x,y) corresponding to a certain phase (0.‘(, 9\)
can be calculated in a decimal pixel unit by
a two-dimensional interpolation based on the
continuity of phase distribution. Since the phases
obtained by Eq. (5) are confined to the range
of-r to = the phases are adjusted so as to
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(c) Real part of (1,0) order harmonic

(d) Real part of (0,1) order harmonic
Fig.4 FTGM analysis of 2D grating on rubber
plate
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the same phase vector exist on both the left
and right images. These points can be regarded
the The
correspondence of the left and right images can

as same point on the specimen.

be determined by searching the points which
have the same phase vector on the both left

and right images. The coordinates of these

points which have same phase vector are
calculated not in integer but in real number
using the liner interpolation.

By the

distributions in both images recorded by camera

analyzing two-dimensional phase

1 and camera 2, the exact positions of the
intersection on each image are obtained. From
which this

the 3D coordinate of the point on

each coordinate is obtained by
procedure,
the specimen can be calculated based on the
stereoscopic method. From the 3D coordinates
of the whole surface in the analyzable area on
the specimen, the shape of the specimen and
the distribution of the strain can be calculated.
The three-dimensional positions of grid points
(6).
the intersection of the grating are stored in a
the

is

are determined by Eq. The positions of

database. By using the above methods,
the

obtained by the position of each intersection of

shape of plate before deformation

the grating on the object. After deformation,
the shape of the vibrating object is meaured
by the same method. Furthermore the shape
and strain distribution of the vibrating specimen
can be dynamically alalyzed from the images
at each time step for one period. By analyzing
before and after

positions of the object

deformation, the shape and strain distribution
can be calculated. The results of the three-
and strain e distribution

dimensional shape

times of 0sec and 1.07sec are

shown in Fig. 5 and Fig. 6, respectively. The

obtained at

matching of the corresponding points between

before and after deformation can be also

automated by comparing the phases.
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Fig. 5 Results of calculating 3D shape

-0.05
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Fig. 6 Surface strain distributions

4. CONCLUSIONS

In order to analyze the shape and strain on
the surface of vibrating objects, we have
previously proposed the Fourier transform grid
method to analyze the three-dimenstional shape
and surface strain dirstribution of standstill
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objects by analyzing the two-dimensional grating
images recorded with two cameras. The three-
dimensional coordinates of the surface points of
an object have been claculated using the
stereoscopic method. Using the Fourier trans-
form grid method, the two-dimensional grating
can be easily seperated to x-and y-grating. By
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be continuous by adding or subtracting 2z. The
phase distribution in the image input from the
CCD camera at a different angle can be
computed the same way. Then, the

corresponding points of the different images can
be found out by interpolating the phase
distribution.
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grating

Fig.2 Schema of Fourier spectrum of 2D grating

3. EXPERIMENT AND ANALYSIS

In order to measure 3D shape and strain
distribution of a vibrating rubber plate, the
meaurement system shown in Fig. 3(a) was
developed based on the stereoscopic method.
Figure 3(b) shows the geometrical relation of
the position of the specimen and two cameras.
Two-dimensional grating lines are drawn on the
object for matching the corresponding points of
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the two images recorded from dirfferent
directions in the stereoscopic method. These
grating lines can also be used as the
corresponding points before and after
deformation. Figure 3 shows the views from the
direction of the vy-axis.

Now the specimen is assumed to exist at the
place shown in Fig. 3. The coordinate of a
point P on the specimen can be calculated from
the gemetrical relationship. C, and C, are the
position of camera 1 and camera 2, respec-
tively, The camera 1 and camera 2 are as-
sumed to be parallel with the z-axis and to
be toward the negative z-direction. In the views
from camera 1 and camera 2, P is
photographed as if it existed at P, and P, on
the x-y plane, respectively. It is easy to
determine the correspondence of the coordinates
on the image and the x-y coordinates on the
x-y plane. Therefore the 3D coordinates of P,
and P, are immediately obtained from the
images photographed by camera | and camera
2. The 3D position (x,y,2z) of each grid point
is calculated using the following equations :

x = zp(Xe1 = Xp1)/2Zct + Xpy

y = zplyct = ¥YP1)/Zc1 + yp1
(6)

- Xp1 * Xp2

(xcy = xp1)/zcy = (xcz — xp2)/zc2

where the coordinate components of the point

C, C, P, and P, are expressed in x, y and
z with the suffixes C,, C,, P, and P,
respectively.
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(a) Measurement system
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(b) Geometrical relation of the system

Fig.3 Shape and strain measurement system for
3D object

The distance of the measured point on the
video is accurately by the FTGM
techniques, the three-dimensional
position of each point on the object is analyzed
by Eq. (6).

By using this measurement method, the pos-
ition of each intersection of the gration on the
object is obtained both before and after the
deformation. In this paper, the strains are used
to simplify the treatment. The strains are
defined as follows :

images
and then

_ du
Ex = dx
dv
= 7
€y dy
du dv
xy = —— +
Ty dx dy

where u and v are the components of
displacement in the x-and y-directions

respectively, & and & are the x-and y-

directional normal strains, respectively, and 7«.
is the shear strain.

Let us show the way to analyze shape and
strain from the two images obtained in this
experiment. The 3D shape and strain of a
vibrating rectangular rubber plate is measured
by the method metioned above. The specimen
is a rubber plate whose size is 450X 40X 10mm.
The upper end of the specimen is fixed and
the lower end is statically pulled in the
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perpendicular direction to the original rubber
surface. A two-dimensional grating pattern with
a pitch Imm is drawn on the plate before
deformation The specimen is set with inclining
30 degree from z-axis. A portion of the
deformed grating is recorded with two CCD

cameras. The region for the measurement is
the rectangular between 100 and 20mm from the

upper end of the specimen. The pitch between
two grating lines in each image is about 6
pixels. Figure 4(a) shows the grating image
recorded by camera 1. Each image obained
from cameras is transformed to the Fourier
spectrum by calculating the Fourier transform.
The Fourier spectrum of the grating image is
shown in Fig. 4(b). The cross grating can be
divided to the one-dimensional gratings for each
x-and y-direction by extractings the first har-
monic of each direction and by calculating the
inverse Fourier transform. These gratings have
a real part and an imaginary part. The real
part of the inverse Fourier transform of the
(1,0) harmonic and the (0,1) harmonic are
shown in Fig. 4(c) and Fig. 4(d), respectively.
The phase distributions of each direction can
be obtained from these gratings by Eq. (5).
A point is selected as the datum point of the
phase distribution, which has the same phases
in each of the x-and y-directions, between the
left and right images. The point which have

(a) 2D grating image
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improving the Fourier transform grid method
program in order to perform the automated and
high-speed analysis of the FTGM, the three-
dimensional shape and surface strain distributions
of a vibrating object changing with time are
measured. Moreover, by calculating and
interpolating phase distribution, the decimal pixel
unit measurement and automated matching is
performed.
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