• Title/Summary/Keyword: STR marker

Search Result 17, Processing Time 0.027 seconds

Improvement of the Discrimination Capacity through the Expansion of Y Chromosomal STR Markers

  • Dong Gyu Lee;So Eun Lee;Ji Hwan Park;Si-Keun Lim;Ju Yeon Jung
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.302-313
    • /
    • 2023
  • Y chromosomal short tandem repeat (Y-STR) markers have been developed continuously to complement forensic DNA analyses and population genetic studies. Initially, we collected data from previously reported Korean population Y-STR haplotype studies on 1133 individuals. We then conducted a marker expansion analysis using a dataset from the Y-STR Haplotype Reference Database (YHRD), covering up to 29 Y-STRs, referred to as Ymax. Additionally, we examined the impact of rapidly mutating (RM) Y-STRs included in this expanded marker set on the discrimination capacity. We observed that marker expansions both with (0.9896), and without (0.9510), RM Y-STR improved the discrimination capacity. Subsequently, we focused on 16 individuals belonging to seven distinct groups sharing identical haplotypes. These particular haplotypes had been previously identified among 476 unrelated males using 23 Y-STR markers from the PowerPlex® Y23 System. We expanded the marker panel up to Ymax to explore how discrimination improved with an expansion of Y-STR markers for these 16 individuals. Among the expanded markers, DYS627, which had high discriminatory power, had a high mutation rate (1.10 × 10-2) and high gene diversity (0.83). In contrast, DYF387S1 displayed high gene diversity (0.95) but a relatively low mutation rate (2.80 × 10-3). We propose that these findings will be valuable in the selection of suitable Y-STR markers, depending on the objectives of forensic analyses. Additionally, the presence of frequently observed Y-haplotypes in Korean population will facilitate statistical interpretation in Y-STR DNA profiling.

Choosing Optimal STR Markers for Quality Assurance of Distributed Biomaterials in Biobanking

  • Chung, Tae-Hoon;Lee, Hee-Jung;Lee, Mi-Hee;Jeon, Jae-Pil;Kim, Ki-Sang;Han, Bok-Ghee
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • The quality assurance (QA) is of utmost importance in biobanks when archived biomaterials are distributed to biomedical researchers. For sample authentication and cross-contamination detection, the two fundamental elements of QA, STR genotyping is usually utilized. However, the incorporated number of STR markers is highly redundant for biobanking purposes, resulting in time and cost inefficiency. An index to measure the cross-contamination detection capability of an STR marker, the mixture probability (MP), was developed. MP as well as other forensic parameters for STR markers was validated using STR genotyping data on 2328 normal Koreans with the commercial AmpFlSTR kit. For Koreans, 7 STR marker (D2S1338, FGA, D18S51, D8S1179, D13S317, D21S11, vWA) set was sufficient to provide discrimination power of ${\sim}10^{-10}$ and cross-contamination detection probability of ${sim}1$. Interestingly, similar marker sets were obtained from African Americans, Caucasian Americans, and Hispanic Americans under the same level of discrimination power. Only a small subset of commonly used STR markers is sufficient for QA purposes in biobanks. A procedure for selecting optimal STR markers is outlined using STR genotyping results from normal Korean population.

Short Tandem Repeat Allele Frequencies in Sasang Constitution (사상체질별 Short Tandem Repeat 대립유전자 빈도)

  • Park, Hwa-Yong;Yu, Hyun-Joo;Ku, Im-Hoi;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.21 no.1
    • /
    • pp.227-236
    • /
    • 2009
  • 1. Objectives As a basic trial for identification of Sasang constitutional gene marker, we genotyped and analysed statistical relationships of STR(short tandem repeat) alleles and its distribution in each constitution. 2. Methods After obtaining basic constitutional data with questionnaire (QSCC II), decision of constitution was made by 3 different constitution specialists' diagnosis, and only the samples of specialists' agreement of each constitution by discussion were taken into this research. Using multiplex PCR kit, total 146 constitutional samples were amplified in 16 autosomal STR marker, genotyped, and analysed statistically. Among 16 markers, 15 were analysed in this study excluding the amelogenin marker is used for in gender identification. 3. Results and Conclusions It is difficult to determine the relationship between constitution and STR marker as the sample size is small, however, Penta D and vWA were shown to be related statistically with constitution. It has been know that STRs has no genetic informations, however there are some recent research results showing STRs as a regulatory element, relationship between microsatellite instability and repeat number and size, and post-transcriptional sigualing. STRs which is not known about its function currently, are proposed to have function and/or regulatory activities anyhow with Sasang constitution. It is believed that the results of this study can halp determine and deatify the markers related to Sasang Constitutional Medicien.

  • PDF

A Review of Extended STR Loci and DNA Database

  • Cho, Yoonjung;Lee, Min Ho;Kim, Su Jin;Park, Ji Hwan;Jung, Ju Yeon
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2022
  • DNA typing is the typical technology in the forensic science and plays a significant role in the personal identification of victims and suspects. Short tandem repeat (STR) is the short tandemly repeated DNA sequence consisting of 2~7 bp DNA units in specific loci. It is disseminated across the human genome and represents polymorphism among individuals. Because polymorphism is a key feature of the application of DNA typing STR analysis, STR analysis becomes the standard technology in forensics. Therefore, the DNA database (DNA-DB) was first introduced with 4 essential STR markers for the application of forensic science; however, the number of STR markers was expanded from 4 to 13 and 13 to 20 later to counteract the continuously increased DNA profile and other needed situations. After applying expanded STR markers to the South Korean DNA-DB system, it positively affected to low copy number analysis that had a high possibility of partial DNA profiles, and especially contributed to the theft cases due to the high portion of touch DNA evidence in the theft case. Furthermore, STR marker expansion not only contributed to the resolution of cold cases but also increased kinship index indicating the potential for improved kinship test accuracy using extended STR markers. Collectively, the expansion of the STR locus was considered to be necessary to keep pace with the continuously increasing DNA profile, and to improve the data integrity of the DNA-DB.

Validation of QF-PCR for Rapid Prenatal Diagnosis of Common Chromosomal Aneuploidies in Korea

  • Han, Sung-Hee;Ryu, Jae-Song;An, Jeong-Wook;Park, Ok-Kyoung;Yoon, Hye-Ryoung;Yang, Young-Ho;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Purpose: Quantitative fluorescent polymerase chain reaction (QF-PCR) allows for the rapid prenatal diagnosis of common aneuploidies. The main advantages of this assay are its low cost, speed, and automation, allowing for large-scale application. However, despite these advantages, it is not a routine method for prenatal aneuploidy screening in Korea. Our objective in the present study was to validate the performance of QF-PCR using short tandem repeat (STR) markers in a Korean population as a means for rapid prenatal diagnosis. Material and Methods: A QF-PCR assay using an Elucigene kit (Gen-Probe, Abingdon, UK), containing 20 STR markers located on chromosomes 13, 18, 21, X and Y, was performed on 847 amniotic fluid (AF) samples for prenatal aneuploidy screening referred for prenatal aneuploidy screening from 2007 to 2009. The results were then compared to those obtained using conventional cytogenetic analysis. To evaluate the informativity of STR markers, the heterozygosity index of each marker was determined in all the samples. Results: Three autosomes (13, 18, and 21) and X and Y chromosome aneuploidies were detected in 19 cases (2.2%, 19/847) after QF-PCR analysis of the 847 AF samples. Their results are identical to those of conventional cytogenetic analysis, with 100% positive predictive value. However, after cytogenetic analysis, 7 cases (0.8%, 7/847) were found to have 5 balanced and 2 unbalanced chromosomal abnormalities that were not detected by QF-PCR. The STR markers had a slightly low heterozygosity index (average: 0.76) compared to those reported in Caucasians (average: 0.80). Submicroscopic duplication of D13S634 marker, which might be a unique finding in Koreans, was detected in 1.4% (12/847) of the samples in the present study. Conclusion: A QF-PCR assay for prenatal aneuploidy screening was validated in our institution and proved to be efficient and reliable. However, we suggest that each laboratory must perform an independent validation test for each STR marker in order to develop interpretation guidelines of the results and must integrate QF-PCR into the routine cytogenetic laboratory workflow.

Genetic Characteristics of mtDNA and STR marker in Human Bone Excavated from Mokgam-dong, Siheung in Korea (시흥 목감동 출토 인골의 미토콘드리아 DNA와 STR의 유전적 특징)

  • Seo, Min-Seok;Chung, Yong-Jae;Lee, Kyu-Shik;Park, Ki-Won
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.153-167
    • /
    • 2003
  • We performed nuclear DNA typing and mitochondrial DNA sequencing analysis based on PCR from an ancient Korean remainsexcavated from Siheung in Korea. 7 bones were collected and partially STR(short tandem repeat) systems, Sex determination Amelogenin kit(Promega co, USA), were used in this study. Mitochondrial DNAs were also amplified and sequenced by ABI 310 DNA sequencer. We know that sample no. 2 and no. 3 were females and also sample no. 2 and no.7 possessed the same maternal inheritance by mitochondrial DNA sequencing results. Throughout this research, the mitochondrial DNA sequencing of human in the middle of Joseon Dynasty in Korea is obtained. In addition, this finding will be an important foundation for the future research.

  • PDF

Evaluation of recent changes in genetic variability in Thoroughbred horses based on microsatellite markers parentage panel in Korea

  • Park, Chul Song;Lee, Sun Young;Cho, Gil Jae
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.527-532
    • /
    • 2022
  • Objective: In this study, we aimed to investigate the recent changes such as allele frequencies and total probability of exclusion (PE) in Thoroughbred horses in Korea using short tandem repeat (STR) parentage panels between 2006 and 2016. Methods: The genotype was provided for 5,988 horse samples with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3 and VHL20). Results: In our study, the observed number of alleles per locus ranged from 3 (HMS1) to 9 (ASB17) in 2006 and 4 (HMS1) to 9 (ASB2) in 2016, with a mean value of 6.28 and 6.40, respectively. Of the 15 markers, HMS2, HTG4, and CA425 loci had relatively low polymorphism information content (<0.5000) in the Thoroughbred population. Mean levels of genetic variation in 2006 and 2016 were observed heterozygosity (HO) = 0.708, and expected heterozygosity (HE) = 0.685, as well as and HO = 0.699 and HE = 0.682, respectively. The PE was calculated for each group based on the allele frequencies of 14 or 15 STRs. The 2006 survey analyzed that PE was 0.9998, but it increased to 0.9999 in 2016 after the HMS2 marker was added in 2011. The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred population. Conclusion: The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred horses. However, continuous monitoring genetic variability is necessary.

Evaluation of MT1XT20 Single Quasi-Monomorphic Mononucleotide Marker for Characterizing Microsatellite Instability in Persian Lynch Syndrome Patients

  • Farahani, Najmeh;Nikpour, Parvaneh;Emami, Mohammad Hassan;Hashemzadeh, Morteza;Zeinalian, Mehrdad;Shariatpanahi, Seyed Shervin;Salehi, Rasoul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4259-4265
    • /
    • 2016
  • Background: Colorectal malignancies with high microsatellite instability (MSI-H), either hereditary (Lynch syndrome) or sporadic, demonstrate better prognosis and altered response to 5FU chemotherapy. It is now recommended to perform MSI testing for all new cases of colorectal cancer regardless of being categorized as hereditary or sporadic. For MSI detection, immunohistochemistry or PCR-based protocols using a cohort of various sets of STR markers are recommended. Here we aimed to evaluate a simplified protocol using just a single STR marker, MT1XT20 mononucleotide repeat, for detection of MSI in Lynch syndrome patients. A Promega five-marker MSI testing panel and immunohistochemistry (IHC) were used as the gold standard in conjunction with MT1XT20. Materials and Methods: Colorectal patients with a positive history of familial cancers were selected by evaluating medical records. Based on Amsterdam II criteria for Lynch syndrome 20 families were short listed. DNA was extracted from formalin fixed paraffin embedded tumour and adjacent normal tissues resected from the index case in each family. Extracted DNA was subjected to MT1XT20 mononucleotide marker analysis and assessment with a commercially available five marker MSI testing kit (Promega, USA). IHC also was performed on tissue sections and the results were compared with PCR based data. Results: Eight (40%), seven (35%) and five (25%) cases were MSI positive using with the Promega kit, IHC and MT1XT20, respectively. Among the markers included in Promega kit, BAT26 marker showed instability in all 8 samples. NR24 and NR21 markers showed instability in 7 (87.5%), and BAT25 and MONO 27 in 6 (75%) and 5 (62.5%). Conclusions: Although MT1XT20 was earlier reported as a valid standalone marker for MSI testing in CRC patients, we could not verify this in our Iranian patients. Instead BAT26 among the markers included in Promega MSI testing kit showed instability in all 8 MSI-H CRC samples. Therefore, it seems BAT26 could act well as a single marker for MSI testing in Iranian CRC patients.

Preparation of Antibiotic-Resistant Bradyrhizobium japonicum and Its Inoculation Effects on Soybean [Glycin max(L.) Merr] (항생물질(抗生物質) 표식(標識) 근류균(根瘤菌)의 조제(造製)와 그 접종효과)

  • Kim, Kwang-Sik;Kim, Kil-Yong;Son, Bo-Gyun;Lee, Young-Hwan;Kim, Yong-Woong;Seong, Ki-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.181-188
    • /
    • 1992
  • This study was carried out to evaluate the fate of inoculant Bradyrhizobium japonicum and the inoculation effect on soybean in complex soil environment. To moniter Rhizobium strains from the root, streptomycine and streptomycine and nalidixic acid resistant marker strains were prepared by spontaneous mutagenesis. The characteristics and properties of antibiotic marked strains were not altered by the mutagenesis. The comparison of properties of wild type and antibiotic resistant Bradyrhizobium strains are summarized as follow : 1) The strains of USDA110K-$STR^r$, USDA110N-$STR^r$ and R318-$STR^r$ showed weak tolerance to pH 9.0. The utilization of carbon sources by fast growing group was different from that of slow growing group. The marked strains of R214-$STR^rNAL^r$, USDA110K-$STR^r$ and USDA110N-$STR^r$ was doubtful in utilization of sorbitol and R138-$STR^rNAL^r$ was doubtful in utilization of xylose as a carbon source. 2) By examining the agglutination reaction of serogroups, the strains used were identified as different ones. There were no differences between wild type and marked strains in agglutination titer values. 3) The plasmid size of fast group was slightly greater than that of slow group. However, there was no differences in plasmid size between the wild type and antibiotic resistant strains. This result indicates that the antibiotic resistance was not encoded in plasmid. 4) The recovery of the inoculated strains was up to 12.5 % in soybean cultivated soil and was up to 25 % in soybean uncultivated soil. 5) When the wild type or marked strains were inoculated. there was no significant effect on soybean plant, whereas the inoculation effect was pronounced in soybean uncultivated soil. The inoculation effect seemed to be more pronounced in wild type strains than antibiotic resistant strains. however, the difference was not significant.

  • PDF