• Title/Summary/Keyword: STORM

Search Result 1,701, Processing Time 0.035 seconds

Comparative Sedimentology for the Lacustrine Deposits of the Upper Gyeongsang Supergroup in the Southeastern Gyeongsang Basin, Korea (경상분지 동남부의 상부 경상누층군에 발달한 호성퇴적층에 대한 비교퇴적학적 연구)

  • Paik, In-Sung;Kim, Hyun-Joo;Lee, Joon-Dong;Kim, In-Soo;Kim, Jin-Seop;Moon, Byoung-Chan
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.423-436
    • /
    • 2000
  • The lithofacies, biofacies, and paleosol development of the Jindong Formation, the Geoncheonri Formation, and the lacustrine deposits of Mt. Hwangryeong at Pusan, which occur in the southeastern part of the Gyeongsang Basin, were analyzed in comparative sedimentology and in stratigraphy. The common features of these lacustrine deposits are: 1) clastic deposits are prevailing, 2) deltaic deposits are not associated, 3) mudflat deposits are common, and 4) stromatolites are absent. The distinct differences among these deposits are: 1) in the Jindong Formation, the mudflat deposits are predominant, pedogenic calcretes are commonly present, and dinosaur tracks frequently occur, compared with other two lacustrine deposits, and 2) in the Geoncheonri Formation, invertebrate fossils are relatively common and storm deposits are not recognized, compared with other deposits, and 3) evaporite mineral casts and tuffaceous turbidite deposits are common in the Mt. Hwangryeong lacustrine deposits. In stratigraphy, the Geoncheonri Formation is correlated with the lower part of the Jindong Formation, and the Mt. Hwangryeong lacutsrine deposits are deemed to overlie the Jindong Formation. On the basis of comparative sedimentology and stratigraphic relationship among these lacustrine deposits, general paleoenvironements of the southeastern part of the Gyeongsang Basin from the late Hayang time to the early Yucheon time are interpreted as follows. During the late Hayang time, tectonic and volcanic activities were generally inacitive in the Gyeongsang Basin, and lacustrine environments expanded since the paleoclimatic condition became less arid compared with the middle Hayang time. In general, however, paleoclimate during the late Hayang time was still arid, and wetting and drying periods were alternated. The occasional occurrences of severe droughts were also characteristic of the late Hayang time. Mudflats existed in wide area in the southeastern part of the Gyeongsang Basin during the late Hayang time, and sedimentation rate was accordingly low. The sedimentation rate became relatively high during the latest Hayang time and the early Yucheon time since tectonic and volcanic activities had been active. Generally arid climate continued for the early Yucheon time, enough for evaporite minerals to precipate occasionally.

  • PDF

A Study on the Consciousness Survey for the Establishment of Safety Village in Disaster (재난안전마을 구축을 위한 의식조사 연구)

  • Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.238-246
    • /
    • 2018
  • Purpose: The purpose of this study is to examine the directions for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: The risks of disaster in rural areas were examined and the concept and characteristics of disaster safety village which is a measure on the basis of Myeon (township) among the measures of village unit were examined in order to carry out this study. In addition, opinion polling targeting at officials-in-charge in the local government and survey targeting at experts in disaster safety and building village were conducted. Based on the findings, the directions for establishing a disaster safety village that fitted the characteristics of rural areas were examined. Result: The officials-in-charge in the local government answered that rural areas have a high risk of storm and flood such as heavy snowing, typhoon, drought, and heavy rain as well as forest fire, and it is difficult to draw voluntary participation of farmers for disaster management activities due to their main duties. They also replied that active support and participation of residents in rural areas are necessary for future improvement measures. The experts mostly replied that the problem of disaster safety village project is a temporary project which has low sustainability, and the lack of connections between the central government, local governments and residents was stressed out as the difficulties. They said that measures to secure the budget and the directions of project promotion system should be promoted by the central government, local governments and residents together. Conclusion: The results of this study are as follows. First, a disaster safety village should be established in consideration of the disaster types and characteristics. Second, measures to secure the budget for utilizing the central government fund as well as local government fund and village development fund should be prepared when establishing and operating a disaster safety village in rural areas. Third, measures to utilize a disaster safety village in rural areas for a long period of time such as the re-authorization system should be prepared in order to continuously operate and manage such villages after its establishment. Fourth, detailed measures that allow residents of rural areas to positively participate in the activities for establishing a disaster safety village in rural areas should be prepared.

A Study on the Water Exchange Plan with Disaster Prevention Facilities in Masan Bay (마산만 재해방지시설을 이용한 해수교환 방안에 관한 연구)

  • Kim, Gweon-Su;Ryu, Ha-Sang;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.637-645
    • /
    • 2013
  • Masan bay with a semi-enclosed waters has serious water quality problems due to the low flow and river pollution load from land, and shows the vulnerable locational characteristics to storm surge. We are seeking the way of both operating disaster prevention facilities and water quality improvement measures in the bay. That is, the water was exchanged using the head difference occurred by operating disaster prevention facilities. The location of disaster prevention facilities was assumed to be in the inlet of the bay, in the vicinity of Machang bridge, and in the vicinity of Dot island and the operation time was assumed to be early morning hours(01~05) considering the number of shipping passage and annual tide, and spring tide of the largest head difference. In addition, the experiment case of water exchange including the in-outflow feeder pipe was tested. According to the simulation results, water exchange rate in all experiments has shown a steady increase. Water exchange rate of the whole of Masan bay in the case of present is 38.62%. The water exchange rate of the inside of Masan bay compared with the inlet of bay, appeared to be very low. Thus, we judged that the characteristics of semi-enclosed waters were well reproduced. On the results of the experiment of disaster prevention facilities and in-outflow feeder pipe, the case of the operation of disaster prevention facilities, water exchage rate is high compared with the case of present. And, the higer the operating frequency, the more water exchange is appeared. The cases of water exchange prevention facilities through the in-outflow feeder pipe caused by the head difference, also showed the higest improvement of the water quality. Compared with the south of Machang bridge, the effect of water exchange was better in the inlet of Masan bay and Dot island. On the other hand, the inlet of Masan bay is higer than Dot island as for water exchange of the whole of Masan bay, but opposite, water change rate including Masan inside was higher in the case of Dot island.

A Study on the Calculation of Nonpoint Source EMCs using SWMM in Transportation Area (강우유출모형을 활용한 교통지역 비점오염원 EMCs 산정 연구)

  • Kwon, Heongak;Im, Toehyo;Lee, Jaewoon;Jeong, Hyungi;Lee, Chunsik;Cheon, Seuk
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.193-202
    • /
    • 2015
  • In this study, a long term monitering of nonpoint source pollution runoff is conducted at the area of transportation related and EMCs(Event Mean Concentrations) in terms of water quality items, such as BOD, $COD_{Mn}$, SS, T-N and T-P are determined for each not only runoff event and but also observation site. On the other hands, SWMM(Storm Water Management Model) model is constructed using the data collected in the transportation areas selected. Model calibration and verification of SWMM is carried out based on the data collected. And simulated EMCs was compared with observed EMCs by monitoring and prior studies. SWMM applicability estimation was Using the compared result. The results of simulation showed that BOD 5.787 ~ 14.475 mg/L, $COD_{Mn}$ 12.946 ~ 59.611 mg/L, SS 13.742 ~ 46.208 mg/L, T-N 2.037 ~ 5.213 mg/L, T-P 0.117 ~ 0.415 mg/L. And a differential between simulated EMCs and observed EMCs is too low so comparing result show high fit(BOD 4.27 %, $COD_{Mn}$ 4.87%, SS 2.31%, T-N 5.78%, T-P 14.45%). A results of compared with the prior studies, BOD and T-P are included range of prior studies, $COD_{Mn}$ and SS are lower than range of prior studies, T-N is higher than range of prior studies. Differential between simulated EMCs and prior studies EMCs was showing for survey seasonal and changing land-use, so from now on, EMCs of using the internal representatives value will be calculated by more monitoring toward various precipitation events.

Depositional Characteristics and Seasonal Change of Surface Sediment and Sedimentary Strucutre on the Doowoovi Tidal Flat, Southwestern Coast of Korea (한국 서남해안 두우리 조간대에서 표층 퇴적물 및 퇴적구조의 특성과 계절변화)

  • Baek Young Suk;Chun Seungsoo
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.10-17
    • /
    • 2004
  • The Doowoo-ri tidal flat in the southwestern Korean coast is a typical open-coast tidal flat which has no barriers in the offshore such as barrier island and sand bars. The difference of induced wave energy with seasons is affected directly on the distribution of surface sediment and the formation of sedimentary structures because the sedimentation by wind wave is relatively much important element in this open-coast tidal flat. This open-coast tidal flat can be classified into tidal beach, intertidal flat and lower mudflat according to the pattern of geomorphology and sediment type. The intertidal flat can be again divided into 3 types: sand flat, mixed flat and mud flat based on the primary sedimentary structure and sand/mud ratio. Doowoori tidal flat shows a seasonal change in the surface sedimentary facies based on sediment composition and primary sedimentary structure. The change is closely related to the direction and magnitude of monsoon wind and also to storm frequency. In winter and spring, when northwesterly wind is most dominant and strong and also storms are common, sand-flat facies is largely distributed on the intertidal flat, whereas mud-flat facies is most dominant during summer when weak southeasterly wind is common. In the fall season, mixed-flat facies is dominant on the flat. The Doowoori intertidal flat is covered by mud sediment which is ca. 20 cm in thickness in summer season. In winter season, surface sediment is changed from mud to sand because the summer mud is mostly eroded by strong wave action. Can-core peels in the intertidal flat show that parallel laminated mud or sand/mud and climbing ripple cross-laminated sandy silt are dominant on the upper intertidal flat $(0-1.3 {\cal}km)$ during summer season. On the other hand, on lower intertidal flat $(1.7-2.3 {\cal}km)$, dominant sedimentary facies is homogeneous mud. In winter, it is changed into parallel laminated and ripple cross-laminated sand facies.

  • PDF

A New High Qualilty Rice Variety with Lodging Resistance and Multiple Resistance to Diseases, "Donghaejinmi" (중만생 고품질 내도복 복합내병성 벼 신품종 "동해진미(東海珍味)")

  • Yeo, Un-Sang;Kim, Jeong-Il;Lee, Jeom-Sig;Park, No-Bong;Chang, Jae-Ki;Oh, Byeong-Geun;Kang, Jung-Hun;Kwak, Do-Yeon;Cho, Jun-Hyun;Lee, Jong-Hee;Kwon, Oh-Deog;Lee, Ji-Yoon;Nam, Min-Hee;Kim, Sang-Yeol;Ku, Yeon-Chung;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.288-291
    • /
    • 2009
  • A new commercial rice variety "Donghaejinmi" is a japonica rice (Oryza sativa L.) with lodging resistance and high grain quality. It has been developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA. This variety was derived from a cross between "Milyang 64" as a resistance source of brown planthopper (Bph) and "Milyang 165" as grain quality source. The donor parent, "Milyang64" has been backcrossed three times with recurrent parent, "Milyang165" and selected by the pedigree breeding method. The pedigree of "Donghaejinmi", designated as "Yeongdeog 41" in 2003, was YR21259-B-B-68-1. It has a short culm length with 69 cm and medium-late growth time. This variety is resistant to stripe virus and moderately resistant to leaf blast disease with durable resistance. It also has tolerance to unfavorable environment such as cold, dried wind and storm. Milled rice kernel of "Donghaejinmi" is translucent, clear in chalkness and good at eating quality in panel test. The merit of this variety is high head rice ratio, which is essential element to produce an article of superior quality rice brand. The yield potential of "Donhaejinmi" in milled rice is about 6.05 MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Yeongnam inland plains and eastern costal area of Yeongnam province.

Assessment of Environmental Impact on the Severely Soil-Eroded Area by heavy Rainfall (집중호우로 인한 토양침식 우심지역 환경영향평가)

  • Hyun, Byung-Keun;Song, Kwan-Cheol;Jung, Sug-Jae;Sonn, Yeon-Kyu;Kim, Lee-Yeol;Kim, Sun-Kwan;Kwak, Han-Kang;Jung, Ji-Ho;Choi, Jung-Won;Jung, Ki-Yeol;Kim, Chun-Sig;Hyun, Geun-Soo;Pyeon, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.118-130
    • /
    • 2007
  • The steep-sloped agricultural land was severely damaged by rainfall events during July and August every year. The objective of this study was to investigate an effects of intensive rainfall to the soil properties of the steep-sloped agricultural land. Survey sites including the Sacheon myeon area were located in Gangneung, those were severely damaged from a forest fire in April 2000. Surveys were taken at these sites after two years of forest fire and severe rainfall events in August 2002, which included an event that poured with 870 mm of rainfall in a day. After this storm, soil erosion, burying, and flooding were observed. Severe soil loss was found at lower soil-depths, greater slopes, longer slope lengths, and concave landscapes. Soil loss and land slides were often found at areas with having a coarser textures, higher bulk densities, lower water holding capacity, and lower rates of soil aggregation. Crop growth stagnation was found at the site of crop restoration because of low soil fertility and poor drainage caused by the abrupt textural changes. In conclusion, it is necessary to manage the steep-slope agricultural land based on environmental impact assessment data of macro morphological and physical characteristics by intensive rainfall.

Effect of Summer Sea Level Rise on Storm Surge Analysis (하계 해수면 상승이 폭풍해일고 분석에 미치는 영향)

  • Kim, A Jeong;Lee, Myeong Hee;Suh, Seung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.298-307
    • /
    • 2021
  • Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect southeast (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

A Study on the Nonpoint Pollutant Loadings in Urban and Agricultural Areas (도시(都市)와 농촌(農村)에서의 비점원(非點源) 오염물(汚染物) 배출양상(排出樣相)에 관한 연구(硏究))

  • Lim, Bong Su;Lee, Byung Hyun;Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.45-53
    • /
    • 1984
  • This study was conducted to investigate characteristics of nonpoint pollutant discharges and concentrations in runoff from the urban and agricultural areas in Korea. The analytical parameters used for this study were COD, BOD and SS. This study was conducted during the period from May to August 1981. Nonpoint pollutant mass loadings from the urban area were influenced by the rainfall intensity and the duration of rainfall, and etc. The concentrations of pollutants in the first flush was higher as the discharges increased. It was, however, found that the concentrations of pollutants in the heavy storm runoff were decreased due to the dilution effect. When other rainfall followed a peak rainfall, the concentrations of pollutants were lower than expected, because the first flush conveyed the most of pollutants deposited on the combined sewers. However the concentrations were increased in proportion to the increased flow when a rainfall of higher intensity than the first flush was continued. Yearly area yield rates in kg/ha were estimated to be 690.5(489.9~1,328) of COD, 319.7(226.8~614.8) of BOD, and 831.2(589.7~1,598) of SS. Pollutant sources in agricultural area were of the domestic waste water, manure composting stack, and agricultural solid wastes and etc. In the paddy field, yearly area yield rates in kg/ha were estimated to be 623.4(21.7~114) of COD, 18.65(9.53~34.5) of BOD, and 91.9(46.3~171.8) of SS. In the crop land, however, yearly rates in kg/ha were estimated to be 91.9(46.3~171.8) of COD, 23.09(11.7~42.5) of BOD, and 23.09(11.4~43.4) of SS. Pollutant sources in the feedlot area were originating from the feces of cattle, the cleaning water, the wastes spilled from manure composting stack during rain. Yearly area yield rate in kg/ha was estimated to be 3.804(2,489~6,658) of COD, 2.047(464~2,900) of BOD, and 1.149 (729~1,442) of SS. Pollutant discharges in the forest area were resulted from the organic layer like leaves and others deposited on the surface. Yearly area yield rate in kg/ha was estimated to be 9.86(5.45~18.56) of COD, 3.48(1.67~7.54) of BOD, and 4.64(9.74~10.35) of SS.

  • PDF