• Title/Summary/Keyword: STORAGE

Search Result 22,853, Processing Time 0.414 seconds

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

The Fluid Flow and Heat Storage Performance in Thermal Storage Bed using Gravel (자갈축열층의 공기유동 및 축열성능)

  • Lee, Jong Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • Fossil energy is needed for a whole year greenhouse cropping due to climate in South Korea. Because the most of the fossil energy resources is imported, it is necessary to develop technology to be able to reduce the energy cost in order to manage greenhouse profitably. The greenhouse commonly consume less amount of energy as compared to other industrial sectors. Replacement of fossil fuel with solar thermal storage, therefore, can be an economical as well as environmentally sustainable option for greenhouse heating. The fluid flow, heat storage and radiation characteristic of the gravel bed model were analyzed to provide basic data for design of the experimental solar heated greenhouse with underground thermal storage using gravel. The air flow velocity in the gravel storage bed was proven to be affected from the capacity of circulation fan and the circulation method and the positive pressure method was proven to be the best among the different air circulation methods. The initial air temperature of the thermal storage bed of 1.2 m $wide{\times}9$ m $long{\times}0.9$ m deep was $10^{\circ}C$. After the thermal storage bed is heated by air of the mean temperature $4^{\circ}C$ during 9 hours, the temperature has increased about $20.3^{\circ}C$ and the storage of heat was about 33,000 kcal. The important factors should be taken into consideration for design of the solar heated greenhouse with underground thermal storage using gravel are insulation of rock storage, amount of storing heat, inflow rate and direction of inlet and outlet duct.

Changes in Physicochemical Properties of Pork Patty with Dandelion Extract during Refrigerated Storage (민들레 추출액을 첨가한 돈육패티의 냉장저장 중 품질변화)

  • Choi, Young-Joon;Park, Hyun-Suk;Lee, Jae-Sang;Park, Kyung-Sook;Park, Sung-Suk;Jung, In-Chul
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.423-430
    • /
    • 2015
  • This study was carried out to investigate the effects of dandelion leaf, root and whole part extracts on the physicochemical characteristics of pork patties stored at $4^{\circ}C$ for 10 days. Four types of pork patties were evaluated: ice-water-added (T0), dandelion leaf extract (T1), dandelion root extract (T2) and dandelion whole part extract (T3). The pH decreased significantly during storage, but increased after 10 days of storage. The pH was highest in T0 during storage. The L value of T0 increased whereas T1, T2 and T3 did not significantly changed during storage. The a value decreased with a longer storage period, and the a values for T1, T2 and T3 were higher than that of T0 during storage. The b value did not change significantly during storage. The TBARS increased with a longer storage period, and the values for T0, T1, T2 and T3 were 0.87, 0.29, 0.47 and 0.31 mg MA/kg, respectively, after 10 days of storage. The VBN content value of T0 increased, but those of T1, T2 and T3 did not significantly change during storage. The water holding capacity of T0 decreased, but those of T1, T2 and T3 did not significantly change during storage. Cooking loss increased during storage and that of T0 was higher than those of T1, T2 and T3. Hardness and chewiness decreased while springiness and cohesiveness increased during storage.

Optical Performance Evaluation of SIL Assembly with Lateral Shearing Interferometer (층 밀리 간섭계를 이용한 고체침지렌즈의 광학적 성능 평가)

  • Lee, Jin-Eui;Kim, Wan-Chin;Choi, Hyun;Kim, Tae-Seob;Yoon, Yong-Joong;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.224-229
    • /
    • 2006
  • There has been studied flow to minimize the spot size to increase data capacity. Optical data storage devices are being developed near practical limits with wavelength and NA of 405nm and 0.85. There has been studied many types of next generation storage devices such as blu-ray multilayer system, probe based data storage and holographic data storage. Among these data storage devices, solid immersion lens(SIL) based near field recording (NFR) has been widely studied. In this system, SIL is the key component that focuses the laser beam with a very small size which enables ultra high data capacity. Therefore, optical performance evaluation system is required for SIL assembly. In this dissertation, a simple and accurate SIL assembly measurement method is proposed with wedge plate lateral shearing interferometer(LSI). Wedge plate LSI is cheaper than commercialized interferometer, robust to the vibration and the moving distance for phase shifting is large that is order of micrometer. We designed the thickness, wedge angle, material, surface quality and wavelength of wedge plate as 1mm, 0.02degree, fused silica, lamda/10(10-5) and 405nm, respectively. Also, we confirmed simulation and experimental results with quantitative analysis. This simple wedge plate LSI can be applied to different types of SIL such as solid immersion mirror(SIM), hemispherical, super-hemispherical and elliptical SIL.

  • PDF

KOREN based Domestic and International Verification Test of Mass Abyss Storage (대용량 Abyss Storage의 KOREN 네트워크 기반 국내 및 해외 실증 테스트)

  • Cha, ByungRae;Cha, YoonSeok;Choi, MyeongSoo;Park, Sun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • The trends in ICT are concentrated in IoT, Bigdata, and Cloud Computing. These mega-trends do not operate independently, and mass storage technology is essential as large computing technology is needed in the background to support them. In order to evaluate the performance of high-capacity storage based on open source Ceph, we carry out the demonstration test of Abyss Storage with domestic and overseas sites using educational network KOREN. In addition, storage media and network bonding are tested to evaluate the performance of the storage itself. Although there is a substantial difference in aspect of the physical speed among storage medias, there is no significant performance difference in the storage media test performed. As a solution to this problem, we could get performance improvement through network acceleration. In addition, we conducted actual performance test of Abyss Storage internal and external network by connecting domestic and overseas sites using KOREN network.

Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

  • Heo, Jin Young;Park, Jung Hwan;Chae, Yong Jae;Oh, Seung Hwan;Lee, So Young;Lee, Ju Yeon;Gnanapragasam, Nirmal;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2427-2444
    • /
    • 2021
  • The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

Effects of Storage Temperature and Time on the Quality of Eggs from Laying Hens at Peak Production

  • Jin, Y.H.;Lee, K.T.;Lee, W.I.;Han, Y.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.279-284
    • /
    • 2011
  • The objective of this study was to evaluate the effects of storage temperature and time on the quality parameters of eggs from laying hens at peak production. A total of 576 eggs were obtained from Lohmann Light-Brown hens, which were collected 3 times when the hens were 26, 27, and 28 weeks old. The fresh eggs were collected and measured within 2 h of being laid. Samples of 48 eggs each were stored in chambers for 2, 5, or 10 d inside a refrigerator ($5^{\circ}C$), at room temperature ($21^{\circ}C$), and at a high temperature ($29^{\circ}C$). As the storage temperature and time increased, egg weight, percentage of albumen, Haugh unit (HU), and yolk color significantly (p<0.001) decreased. In addition, egg shell weight, shell percentage, and albumen weight significantly (p<0.001) decreased with storage time. Yolk weight, yolk percentage, and albumen pH significantly (p<0.001) increased with increasing storage temperature, and yolk pH significantly (p<0.001) increased with increasing storage time. When the storage temperature was increased to $29^{\circ}C$, egg weight loss dramatically increased from 1.74 to 3.67% at 5 and 10 d of storage time, respectively. With the exception of the $5^{\circ}C$ storage temperature, HU dramatically decreased according to storage time and temperature, decreasing from 91.3 to 72.63 at $21^{\circ}C$ and from 87.62 to 60.92 at $29^{\circ}C$ during 10 d of storage; however, this decline was not found at $5^{\circ}C$. A rapid increase in albumen alkalinity was observed even after just 2 d of storage regardless of the storage temperature. Interactions between storage time and temperature were significant (p<0.001) with respect to egg weight loss, egg shell weight and percentage, albumen weight and percentage, yolk weight and percentage, albumen and yolk pH, HU, and yolk color. The results of the current study indicated that eggs from laying hens at peak production had significant deterioration of internal quality with increasing storage temperature and time. The results suggest that egg weight loss, albumen pH, and HU are parameters that are greatly influenced by the storage temperature and time of eggs from hens at peak laying.

Changes of Vitamin C and Chlorophyll Contents in Oi-Kimchi with Storage time (저장기간에 따른 오이김치의 비타민 C 및 클로로필 함량변화)

  • Park, Mi-Lan;Lee, Yeon-Jung;Kozukue, Nobuyuki;Han, Jae-Sook;Choi, Suk-Hyun;Huh, Sung-Mee;Han, Gyeong-Phil;Choi, Soo-Keun
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.5
    • /
    • pp.566-572
    • /
    • 2004
  • This study was carried out to examine the changes of pH, chlorophyll, chlorophyll patterns and ascorbic acid contents, and sensory evaluation in Oi-Kimhi by the different periods of storage. The contents of chlorophyll a and b were 52.2% and 14.44% at storage 0 days, 20.67% and 16.99% at storage 11 days,0% at storage 14 days, and decreased with storage times increased. But, phephorbide a and b were increased with storage times increased until storage 11 days, and were 28.44% and 1.25% at storage 0 days,42.63% and 15.79% at storage 11 days,0% at storage 12, 14 days. The contents of ascorbic acid were increased until storage 4 days, but afterwards were decreased with storage times increased, and were 2.57mg% at storage 0 days, 5.49mg% and 2.95mg% at storage 11 days, 0% at storage 14 days. Sensory evaluations of appearance, flavor, taste, texture, overall acceptability showed the highest at storage 8 days, and disliked after storage 10 days.

Parallelism-aware Request Scheduling for MEMS-based Storages (MEMS 기반 저장장치를 위한 병렬성 기반 스케줄링 기법)

  • Lee, So-Yoon;Bahn, Hyo-Kyung;Noh, Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.49-56
    • /
    • 2007
  • MEMS-based storage is being developed as a new storage media. Due to its attractive features such as high-bandwidth, low-power consumption, high-density, and low cost, MEMS storage is anticipated to be used for a wide range of applications from storage for small handhold devices to high capacity mass storage servers. However, MEMS storage has vastly different physical characteristics compared to a traditional disk. First, MEMS storage has thousands of heads that can be activated simultaneously. Second, the media of MEMS storage is a square structure which is different from the platter structure of disks. This paper presents a new request scheduling algorithm for MEMS storage that makes use of the aforementioned characteristics. This new algorithm considers the parallelism of MEMS storage as well as the seek time of requests on the two dimensional square structure. We then extend this algorithm to consider the aging factor so that starvation resistance is improved. Simulation studies show that the proposed algorithms improve the performance of MEMS storage by up to 39.2% in terms of the average response time and 62.4% in terms of starvation resistance compared to the widely acknowledged SPTF (Shortest Positioning Time First) algorithm.