• Title/Summary/Keyword: STL 분해

Search Result 14, Processing Time 0.016 seconds

B-spline Surface Reconstruction in Reverse Engineering by Segmentation of Measured Point Data (역공학에서의 측정점의 분할에 의한 B-spline 곡면의 재생성)

  • Hur, Sung-Min;Kim, Ho-Chan;Lee, Seok-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1961-1970
    • /
    • 2002
  • A laser scanner is widely used fur a device fur acquiring point data in reverse engineering. It is more efficient to generate a surface automatically from the line-typed data than scattered data of points clouds. In the case of a compound model, it is hard to represent all the scanned data into one surface maintaining its original line characteristics. In this paper, a method is presented to generate a surface by the segmentation of measured point data. After forming triangular net, the segmentation is done by the user input such as the angle between triangles, the number of facets to be considered as small segment, and the angle for combining small segment. B-spline fitting is implemented to the point data in each segment. The surface generation through segmentation shows a reliable result when it is applied to the models with curvature deviation regions. An useful algorithm for surface reconstruction is developed and verified by applying an practical model and shows a good tools fur reverse engineering in design modification.

Three Dimensional Layering Algorithm for 3-D Metal Printing Using 5-axis (3 차원 금속 프린팅을 위한 다중 3 차원 적층 알고리듬(3DL))

  • Ryu, Sua;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.881-886
    • /
    • 2014
  • The purpose of three-dimensional (3-D) metal printing using 5-axis is to deposit metal powder by changing the orientation of the deposited structure to be built for the overhang or undercut feature on part geometry. This requires a complicated preprocess functionality of providing three dimensionally sliced layers to cover the required part geometry. This study addresses the overhang/undercut problem in 3-D metal printing and discusses a possible solution of providing 3-D layers to be built using the DMT(R) machine.

Computer-guided implant surgery and immediate provisionalization by chair-side CAD-CAM: A case report (진료실 CAD-CAM에 의한 컴퓨터 가이드 임플란트 수술과 즉시 임시보철치료: 증례보고)

  • Hyun, Sang Woo;Lee, sungbok Richard;Lee, Suk Won;Cho, Young Eun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.478-486
    • /
    • 2021
  • This report demonstrates a method of generating a chair-side and computer-aided template for implant surgery based on the Top-Down and restoration-driven concept. Compared to the traditional CAD-CAM process which requires multiple steps to be taken between dental clinic and laboratory, this alternative procedure, VARO guide system (VARO Guide, CAD, Pre-Guide, VARO-mill, NeoBiotech, Seoul, South Korea) enables accurate and patient-friendly implant surgery as well as immediate provisional restoration in a single visit. First, bite-registration at centric jaw relation and CBCT were taken using the Pre-Guide. The CBCT data was then reorganized directly through the chair-side CAD, and we could determine the most appropriate 3-dimensional position of implant. The STL file was extracted and put into the chair-side CAM (VARO-mill) to fabricate a VARO. This surgical guide allowed the implants to be accurately positioned into the planned sites within an hour.

Development of Mathematics 3D-Printing Tools with Sage - For College Education - (Sage를 활용한 수학 3D 프린팅 웹 도구 개발 - 대학 수학교육을 중심으로 -)

  • Lee, Jae-Yoon;Lim, Yeong-Jun;Park, Kyung-Eun;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.28 no.3
    • /
    • pp.353-366
    • /
    • 2014
  • Recently, the widespread usage of 3D-Printing has grown rapidly in popularity and development of a high level technology for 3D-Printing has become more necessary. Given these circumstances, effectively using mathematical knowledge is required. So, we have developed free web tools for 3D-Printing with Sage, for mathematical 3D modeling and have utilized them in college education, and everybody may access and utilize online anywhere at any time. In this paper, we introduce the development of our innovative 3D-Printing environment based on Calculus, Linear Algebra, which form the basis for mathematical modeling, and various 3D objects representing mathematical concept. By this process, our tools show the potential of solving real world problems using what students learn in university mathematics courses.