• Title/Summary/Keyword: STEPPER

Search Result 91, Processing Time 0.026 seconds

Future Strategy of the Korean Petrochemical Industry by Analysing Integrated Emerging Issues (한국 석유화학산업의 미래전략을 위한 융합적 이머징 이슈 분석)

  • Kim, Jong-Chul;Ko, Young-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.307-315
    • /
    • 2017
  • This study aims to propose a methodology for future strategies of the Korean petrochemical industry. Instead of using static models or trade related statistical analysis, we derived emerging issues of the Korean petrochemical industry through survey in accordance with the STEPPER analysis. The participants of the survey were limited to leading experts of the field, such as businessmen, researchers and professors. Also, I observed whether the current driving forces are suitable in analyzing the future. Furthermore, emerging trends and emerging issues as far as 2040 were also extracted through horizon scanning and expert interviews. Through this study, three factors, which are the global oil prices, economic prospects, and core material development, have been confirmed. In the future, I believe that not only petrochemical industry, but also other industries such as steel, autos, shipbuilding and so on, can be studied for future scenarios and strategies as well.

Micro-vibration Isolation Performance of X-band Antenna Using Blade Gear (블레이드 기어를 적용한 2축 짐발 구동 안테나의 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2015
  • A 2-axis gimbal-type X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the desired ground station. However, a discontinuous stepper motor activation for rotating the pointing mechanism in azimuth and elevation directions induces undesirable micro-vibration disturbances which can result in the image quality degradation of a high-resolution observation satellite. To enhance the image quality of the observation satellite, attenuating the micro-vibration induced by an activation of the stepper motor for rotational movements of the antenna is important task. In this study, we proposed a low-rotational-stiffness blade gear applied to the output shaft of the stepper motor to obtain the micro-vibration isolation performance. The design of the blade gear was performed through the structure analysis such that this gear is satisfied with the margin of safety rule under the derived torque budget. In addition, the micro-vibration isolation performance of the blade gear was verified through the micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing (궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건)

  • Lee, Hyoung-Tae;Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

A Study on the Development of Wafer Notch Aligner (노치형 웨이퍼 정렬기 개발에 관한 연구)

  • Na, Won-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.412-418
    • /
    • 2009
  • This study aims to develop a system that enables 20 to 25 wafers to be automatically aligned at the position of the corresponding serial number and facilitates the checkout of wafer processing by sensing them before and after semiconductor processing. It also suggests compensation algorithm and stepper motor control algorithm that carefully align notches. This study minimizes the rate of occurrence by adopting materials of which the surface has proper coefficient of friction when wafers are rotating and that do not rarely produce particles. This study completed the development of a slip resistance apparatus and carried out performance tests through mathematical verification. This system is expected to improve semiconductor yield due to anti-pollution technology in semiconductor processing and can be selectively applied to a large size wafer over 450mm in the future.

  • PDF

Nonlinear Controller for the Velocity Tracking and Rejection of Sinusoidal Disturbances in Permanent Magnet Stepper Motors (영구 자석 스테퍼 모터의 속도 추종과 외란 제거를 위한 비선형 제어기)

  • Kim, Won-Hee;Gang, Dong-Gyu;Han, Jonh-Pyo;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.632-638
    • /
    • 2011
  • In this paper, a nonlinear controller is proposed to track the desired velocity and to cancel sinusoidal disturbances. The proposed method consists of a velocity tracking controller and internal model principles (IMPs). For the design of the velocity tracking controller, mechanical and electrical dynamic controllers are independently designed. For the mechanical dynamics, the velocity tracking controller generates the desired quadrature current to track the desired velocity. The current tracking controller is designed to guarantee the desired quadrature current and to regulate the direct current. Therefore, the proposed velocity tracking controller has a field-oriented control. Since the controllers of the mechanical and electrical dynamics are independently designed, the stability of the closed-loop system is demonstrated using passivity. Since both the cogging torque and DC current errors act as sinusoidal disturbances in PMSM, we use four add-on type IMPs that preserve the merits and performance of the pre-designed controller without sacrificing the closed-loop stability. The performance of the proposed method is validated via simulations.

Development of the Gait Rehabilitation Equipment for Hemiplegic Patients after Stroke (편마비 환자를 위한 보행 재활기구 개발)

  • Nam, T.W.;Cho, J.M.;Kim, S.H.;Lim, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.245-249
    • /
    • 2006
  • The aim of this study is to design and develop the gait rehabilitation equipment that judge patient's movement of his/her center of gravity using pressure sensors, and to aid hemiplegic patients to balance themselves using an automatic stepper that changes the patient's center of gravity. It is hard to bear the weight on the affected side for hemiplegic patients. The gait rehabilitation equipment detects the footing phase of hemiplegic patient during training and moves the unaffected footing side of the stepper up and moves the affected footing side down simultaneously so that the patient's center of gravity can shift from unaffected side to affected side. The gait rehabilitation system was developed and applied for hemiplegic patients during exercise. Eight hemiplegic patients and one normal adult were studied. The developed gait rehabilitation system could judge not only the normal adult's intention but also the patient's intention to move his/her center of gravity. Even though the most of hemiplegic patients exercised in automatic mode and a few hemiplegic patients exercised in manual mode, the developed gait rehabilitation system can aid the hemiplegic patients to train more easily.

A Simple Laboratory Monochromator Controller (실험실용 간이 분광기 구동장치)

  • Sung, Hakje;Kim, Taesam
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.345-348
    • /
    • 1993
  • A monchromator controller has been built to drive directly by a personal computer. This controller gives better conveniency and accuracy on spectroscopic experiment when a monochromator has deficient driver. This controller consists with simple electronic circuit and control program. The original spectroscopic precision is retained by using stepper motor. The rate changing method is adopted for short slew time. And the scanning is synchronized with spectrum recording device. Because the controller includes electronic counting ciruit, other program can be executed on personal computer during monochromator scanning.

  • PDF