• Title/Summary/Keyword: STEM research

Search Result 2,903, Processing Time 0.032 seconds

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

Effect of Seedling Quality on the Seedling Raising Period of Stem Cutting and Yield Characteristics of 'Solara' Potatoes in Aeroponics Cultivation (감자 'Solara' 경삽묘의 육묘기간에 따른 묘소질 및 수경재배에서의 수량 특성)

  • Kang, Hyoung Shick;Kim, Sung Ryong;Kim, Tae Guin;Hong, Soon Yeong;Kang, Young Kil
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • This study was conducted to dentify the optimum plantlet type of 'Solara' potatoes (Solanum tuberosum L.) for growth in an aeroponics system. Plantlets of 'Solara' were transplanted on March 16, 2015 in a greenhouse, and growth and yield characteristics were investigated at 70 and 78 days after transplanting, respectively. Stem length was shorter in plantlet of 15-day-old stem cuttings and acclimatization of culture, and the stem length of plantlets of stem cuttings tended to increase with increasing stem cutting age. The fresh weight of plants was the highest in the plantlets of 40-day-old stem cuttings and the lowest in non-rooted stem cuttings and acclimatization of culture. The highest number of first stolons was obtained in 35-day-old stem cuttings. The number of second stolons was the highest in plantlets of 35-day-old stem cuttings, acclimatization of culture, and 30- day-old stem cuttings. The total number of tubers was higher in plantlets of 35-day-old stem cuttings and acclimatization of culture, and the number of tubers above 3 g was the highest in plantlets of 35-day-old stem cuttings. The weight of tubers above 3 g was the heaviest in plantlets of 35-day-old stem cuttings(1,947 g per 10 plants), followed by plantlets of 30-day-old stem cuttings. These results indicate that plantlets of 30 to 35-day-old stem cuttings could be the best for production of 'Solara' potato tubers in an aeroponics system.

Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila

  • Ji-Hoon Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2024
  • With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young;Min, Woo-Kie;Park, Min Hee;Kim, NamOh;Lee, Jong Kil;Jin, Hee Kyung;Choi, Je-Yong;Kim, Shin-Yoon;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.439-444
    • /
    • 2014
  • Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

Distribution of Stem Vestige according to Ginseng Cultivars and Determination of Root Age by Ginsenoside Types of Red Ginseng (인삼 품종별 경흔적 분포 및 홍삼의 진세노사이드 종류에 따른 연근 판별)

  • Kim, Young Chang;Kim, Jang Uk;Bae, Bong Suk;Kang, Je Yong;Kim, Dong Hwi;Hyun, Dong Yun;Lee, Joon Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.217-223
    • /
    • 2017
  • Background: In Korea, 6-year-old ginseng root is economically more important than 4 or 5-year-old roots. In general, the root age is determined by counting the number of stem vestiges. However, this method does not accurately estimate ginseng root age. Methods and Results: In this study, the stem vestige counting method was used to survey a total of 18,395 fresh ginsengs cultured in 2014, and 2015, to determine the accuracy of this method. The proportion of 6-year-old roots, with more than four stem vestiges, was 46.1% in 2014. For the cultivar Chunpoong cultivated in Eumseong and Goesan countries in 2015, the proportion of more than four stem vestiges was 55.9%, and 43.5%, respectively. The proportion of more than four stem vestiges for the Gumpoong cultivated in Eumseong and Yangpyeong countries was 67.0%, and 35.1%, respectively, whereas that for the cultivar Yunpoong was 36.0% and 61.0%, respectively. Moreover, it was confirmed that differences in the levels of Rg1 will enable root age determination. Conclusions: Root age determination by the stem vestige test was found to differ depending on the environmental and cultivation conditions. To determine the age of ginseng roots, a comprehensive method, such as counting stem vestiges and evaluating differences in ginsenoside levels, should be applied.

Long-Term Priming by Three Small Molecules Is a Promising Strategy for Enhancing Late Endothelial Progenitor Cell Bioactivities

  • Kim, Yeon-Ju;Ji, Seung Taek;Kim, Da Yeon;Jung, Seok Yun;Kang, Songhwa;Park, Ji Hye;Jang, Woong Bi;Yun, Jisoo;Ha, Jongseong;Lee, Dong Hyung;Kwon, Sang-Mo
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.582-590
    • /
    • 2018
  • Endothelial progenitor cells (EPCs) and outgrowth endothelial cells (OECs) play a pivotal role in vascular regeneration in ischemic tissues; however, their therapeutic application in clinical settings is limited due to the low quality and quantity of patient-derived circulating EPCs. To solve this problem, we evaluated whether three priming small molecules (tauroursodeoxycholic acid, fucoidan, and oleuropein) could enhance the angiogenic potential of EPCs. Such enhancement would promote the cellular bioactivities and help to develop functionally improved EPC therapeutics for ischemic diseases by accelerating the priming effect of the defined physiological molecules. We found that preconditioning of each of the three small molecules significantly induced the differentiation potential of $CD34^+$ stem cells into EPC lineage cells. Notably, long-term priming of OECs with the three chemical cocktail (OEC-3C) increased the proliferation potential of EPCs via ERK activation. The migration, invasion, and tube-forming capacities were also significantly enhanced in OEC-3Cs compared with unprimed OECs. Further, the cell survival ratio was dramatically increased in OEC-3Cs against $H_2O_2$-induced oxidative stress via the augmented expression of Bcl-2, a pro-survival protein. In conclusion, we identified three small molecules for enhancing the bioactivities of ex vivo-expanded OECs for vascular repair. Long-term 3C priming might be a promising methodology for EPC-based therapy against ischemic diseases.

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Sung, Eun-Ah;Lee, Seung Eun;Shin, Nari;Choi, Soon Won;Seo, Yoojin;Kim, Hyung-Sik;Kang, Kyung-Sun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.8.1-8.14
    • /
    • 2018
  • We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

Inhibition of Class I Histone Deacetylase Enhances Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells

  • Yukyeong Lee;Seung-Won Lee;Dahee Jeong;Hye Jeong Lee;Na Young Choi;Jin Seok Bang;Seokbeom Ham;Kinarm, Ko
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether selfreprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

Arsenic Trioxide Induces Apoptosis and Incapacitates Proliferation and Invasive Properties of U87MG Glioblastoma Cells through a Possible NF-κB-Mediated Mechanism

  • Ghaffari, Seyed H.;Yousefi, Meysam;Dizaji, Majid Zaki;Momeny, Majid;Bashash, Davood;Zekri, Ali;Alimoghaddam, Kamran;Ghavamzadeh, Ardeshir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1553-1564
    • /
    • 2016
  • Identification of novel therapeutics in glioblastoma remains crucial due to the devastating and infiltrative capacity of this malignancy. The current study was aimed to appraise effect of arsenic trioxide (ATO) in U87MG cells. The results demonstrated that ATO induced apoptosis and impeded proliferation of U87MG cells in a dose-dependent manner and also inhibited classical NF-${\kappa}B$ signaling pathway. ATO further upregulated expression of Bax as an important proapoptotic target of NF-${\kappa}B$ and also inhibited mRNA expression of survivin, c-Myc and hTERT and suppressed telomerase activity. Moreover, ATO significantly increased adhesion of U87MG cells and also diminished transcription of NF-${\kappa}B$ down-stream targets involved in cell migration and invasion, including cathepsin B, uPA, MMP-2, MMP-9 and MMP-14 and suppressed proteolytic activity of cathepsin B, MMP-2 and MMP-9, demonstrating a possible mechanism of ATO effect on a well-known signaling in glioblastoma dissemination. Taken together, here we suggest that ATO inhibits survival and invasion of U87MG cells possibly through NF-${\kappa}B$-mediated inhibition of survivin and telomerase activity and NF-${\kappa}B$-dependent suppression of cathepsin B, MMP-2 and MMP-9.

The role of Purkinje cell-derived VEGF in cerebellar astrogliosis in Niemann-Pick type C mice

  • Park, Min Hee;Lee, Ju Youn;Jeong, Min Seock;Jang, Hyung Sup;Endo, Shogo;Bae, Jae-sung;Jin, Hee Kyung
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative disorder caused by a deficiency of NPC1 gene function, which leads to severe neuroinflammation such as astrogliosis. While reports demonstrating neuroinflammation are prevalent in NP-C, information about the onset and progression of cerebellar astrogliosis in this disorder is lacking. Using gene targeting, we generated vascular endothelial growth factor (VEGF) conditional null mutant mice. Deletion of VEGF in cerebellar Purkinje neurons (PNs) led to a significant increase of astrogliosis in the brain of NP-C mice in addition to the loss of PNs, suggesting PN-derived VEGF as an important factor in NP-C pathology. Moreover, replenishment of VEGF in neurons improved brain pathology in NP-C mice. Overall, our data provide a new pathological perspective on cerebellar astrogliosis in NP-C and suggest the importance of VEGF as a therapeutic target for this disease.