• Title/Summary/Keyword: STATic synchronous COMpensator

Search Result 134, Processing Time 0.021 seconds

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

Design of GA-LQ Controller in SVC for Power System Stability Improvement (전력시스템 안정도 향상을 위한 SVC용 GA-LQ 제어기 설계)

  • Hur, D.R.;Park, I.P.;Chung, M.K.;Chung, H.H.;Ahn, B.C.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.226-228
    • /
    • 2002
  • This paper presents a new control approach for designing a coordinated controller for static VAR compensator system. A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. A design of linear quadratic controller based on optimal controller depends on choosing weighting matrices. A coordinated optimal controller is achieved by minimizing a quadratic performance index using dynamic programming techniques. The selection of weighting matrices is usually carried out by trial and error which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Modeling and Control of Integrated STATCOM-SMES System to Improve Power System Oscillations Damping

  • Molina, Marcelo G.;Mercado, Pedro E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.528-537
    • /
    • 2008
  • Primary frequency control(PFC) has the ability to regulate short period random variations of frequency during normal operation conditions and also to respond rapidly to emergencies. However, during the past decade, numerous significant sized blackouts occurred worldwide that resulted in serious economic losses. Therefore, the conclusion has been reached that the ability of the current PFC to meet an emergency is poor, and security of power systems should be improved. An alternative to enhance the PFC and thus security is to store excessive amounts of energy during off-peak load periods in efficient energy storage systems for substituting the primary control reserve. In this sense, superconducting magnetic energy storage(SMES) in combination with a static synchronous compensator(STATCOM) is capable of supplying power systems with both active and reactive powers simultaneously and very rapidly, and thus is able to enhance the security dramatically. In this paper, a new concept of PFC based on incorporating a STATCOM-SMES is presented. A complete detailed model is proposed and a new control scheme is designed, comprising an enhanced frequency control scheme, and a fully decoupled current control strategy in d-q coordinates with a novel controller to prevent dc bus capacitors voltage drift/imbalance. The performance of the proposed control schemes is validated through digital simulation carried out using MATLAB/Simulink.

Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System (제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용)

  • Quach, Ngoc-Thinh;Kim, Eel-Hwan;Lee, Do-Heon;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Cascaded H-Bridge STATCOM (STATCOM에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • The static synchronous compensator (STATCOM) of cascaded H-bridge configuration accompanying multiple separate DC sides is inherently subject to the problem of uneven DC voltages. These DC voltages in one leg can be controlled by adjusting the AC-side output voltage of each cell inverter, which is proportional to the active power. However, when the phase current is extremely small, large AC-side voltage is required to generate the active power to balance the cell voltages. In this study, an alternative zero-sequence current injection method is proposed, which facilitates effective cell balancing controllers at no load, and has no effect on the power grid because the injected zero sequence current only flows within the STATCOM delta circuit. The performance of the proposed method is verified through simulation and experiments.

Robust Stability Analysis of STATCOM System for Power Quality Enhancement (전력 품질 개선을 위한 STATCOM 시스템의 강인 안정도 해석)

  • Sung, Hwa-Chang;Park, Jin-Bae;Tak, Myung-Hwan;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.220-225
    • /
    • 2010
  • This paper deals with the robust stability analysis of STATCOM (Static Synchronous Compensator) power system for power quality enhancement and power system stability. The STATCOM plays an important role in controlling the reactive power flow to the power network and hence the system voltage fluctuations and stability. The control areas of this plant are very large and the overall composition of the system is nonlinear. Also, STATCOM is influence of the uncertainties so that it is necessary to apply the new control technique. For solving these problems, we perform the fuzzy modeling and robust analysis for STATCOM system.

Chopper Controller Based DC Voltage Control Strategy for Cascaded Multilevel STATCOM

  • Xiong, Lian-Song;Zhuo, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.576-588
    • /
    • 2014
  • The superiority of CMI (Cascaded Multilevel Inverter) is unparalleled in high power and high voltage STATCOM (Static Synchronous Compensator). However, the parameters and operating conditions of each individual power unit composing the cascaded STATCOM differ from unit to unit, causing unit voltage disequilibrium on the DC side. This phenomenon seriously impairs the operation performance of STATCOM, and thus maintaining the DC voltage balance and stability becomes critical for cascaded STATCOM. This paper analyzes the case of voltage disequilibrium, combines the operation characteristics of the cascaded STATCOM, and proposes a new DC voltage control scheme with the advantages of good control performance and stability. This hierarchical control method uses software to achieve the total active power control and also uses chopper controllers to enable that the imbalance power can flow among the capacitors in order to keep DC capacitor voltages balance. The operating principle of the chopper controllers is analyzed and the implementation is presented. The major advantages of the proposed control strategy are that the number of PI regulators has been decreased remarkably and accordingly the blindness of system design and debugging also reduces obviously. The simulation reveals that the proposed control scheme can achieve the satisfactory control goals.

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

Virtual D-STATCOM Considering Distance (거리를 고려한 Virtual D-STATCOM)

  • Kim, Tae-Hun;Oh, Jeong-Sik;Park, Jang-Hyon;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.151-158
    • /
    • 2019
  • In this paper, we construct a Virtual D-STATCOM using a number of grid-connected inverters installed in solar and wind power plants and compensate the reactive power of the cable depending on the reactive power of the load of the power distribution system and the distance to the power distribution line We propose a method to compensate the reactive power of the PCC stage near the substation without installing the existing single large capacity D-STATCOM. The proposed method is verified by Matlab Simulink simulation and its operation principle and reactive power compensation.