• Title/Summary/Keyword: STAT6 phosphorylation

Search Result 45, Processing Time 0.029 seconds

Quercetin suppress CCL20 by reducing IκBα/STAT3 phosphorylation in TNF-α/IL-17A induced HaCaT cells (TNF-α/IL-17A 유도된 HaCaT 세포주에서 Quercetin의 IκBα/STAT3 인산화 조절에 의한 CCL20 발현 억제)

  • Kim, Mi Ran;Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.211-219
    • /
    • 2020
  • Quercetin is a polyphenol compound with excellent antioxidant and anti-inflammatory activity. However, little has been reported about the efficacy of quercetin to control psoriasis. Thus, we aimed to investigate the effect of quercetin to regulate psoriatic dermatitis with HaCaT cell lines activated by TNF-α and IL-17A, which are in vitro psoriasis skin models. When quercetin was treated with TNF-α-activated HaCaT cell line, inflammatory cytokine expressions such as IL-1α, IL-1β and IL-6 were reduced by 49.1±7.14, 42.8±8.16, and 34.5±2.52%, respectively. In addition, mRNA expression levels of IL-8 and CCL20 the chemokines that attract immune cells such as Th17 cells and dendritic cells to the inflammatory reaction site, were also reduced by 38.4±5.83 and 52.9±4.59% compared to the TNF-α treatment group. The expression of proteins KRT6A and KRT16, which was nonspecifically increased in psoriatic skin was also significantly suppressed. Moreover, phosphorylation of IκBα and STAT3 proteins activated by TNF-α was also significantly inhibited. After stimulating the HaCaT with IL-17A, known as another psoriasis-inducing cytokine, it was observed that IκBα mRNA expression decreased by 55.8±5.28%, and STAT3 phosphorylation was downregulated by 36.3±6.81%. Finally, after co-activation by TNF-α/IL-17A, quercetin inhibited all of IL-1α, IL-1β, IL-6, TNF-α and CCL20 gene expression. The above results strongly suggest that quercetin is a material that has not only anti-oxidant and anti-inflammatory activities, but also has an activity in improving psoriasis.

Brazilin downregulates CCL20 expression via regulation of STAT3 phosphorylation in TNF-α/IL-17A/IFN-γ-induced HaCaT cells (TNF-α/IL-17A/IFN-γ 유도된 HaCaT 세포에서 브라질린의 STAT3 인산화 억제를 통한 CCL20 저해 효과)

  • Kim, Mi Ran;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.185-192
    • /
    • 2021
  • Psoriasis is a chronic intractable skin disease caused by various inflammatory cytokines such as IL-6, CXCL8, TNF-α, and IFN-γ, as well as IL-17A secreted from Th17 cells and is characterized by hyperkeratosis and chronic inflammation of the epidermis. Brazilin, an active ingredient of Caesalpinia sappan L., is known to exert antioxidant and anti-inflammatory activity, and function in skin barrier improvement. In particular, it was shown as a potential material for treating psoriasis in a tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocyte model. However, the direct regulation of the C-C motif chemokine ligand (CCL) 20, a psoriasis-inducing factor, by brazilin has not been reported. Therefore, in this study, we investigated the suppression of CCL20 and the regulatory mechanism by brazilin using a psoriasis-like model. First, brazilin downregulated CCL20 and CXCL8 in IL-17A-stimulated HaCaT cells in a concentration-dependent manner by inhibiting signal transducer and transcription (STAT)3 phosphorylation. In addition, brazilin significantly inhibited the expression of psoriasis-related genes CXCL8, CCL20, IL-1, IL-6, and TNF-α in TNF-α/IL-17A/IFN-γ-stimulated HaCaT cells. Moreover, brazilin also had a positive effect on improving the skin barrier in TNF-α/IL-17A/IFN-γ-stimulated HaCaT cells. The above results indicated that brazilin ultimately downregulated CCL20 expression by inhibiting STAT3 phosphorylation, and also suppressed the expression of psoriasis-induced cytokines. If the efficacy of brazilin in improving psoriasis is verified through animal models and clinical trials in the future, it may represent a potentially therapeutic substance for psoriasis patients.

Studies on the regulation of Hematopoietic enhancement of Brassica campestris var narinosa., Canavalia gladiata DC semen and their combinational prescription via Jak2/STAT5/GATA1 Pathway in Sca-1+ hematopoietic stem cells (Sca-1+골수조혈세포에서 JAK2/STAT5/GATA-1 신호전달 경로를 통한 다채, 도두 그리고 두 조합물에 의한 조혈증진 조절에 관한 연구)

  • Kim, Kunhoae;Kim, Seung-Hyung;Cho, In-Sik;Kim, Han-Young;Kim, Dong-Seon;Lee, Young-Cheol
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.7-16
    • /
    • 2013
  • Objectives : Brassica campestris var narinosa (BCN), Canavalia gladiata DC semen (CGD) and their combinational prescription (BCN+CGD) have been use to demonstrate to regulate hematopoiesis. In the current study, we investigated whether Brassica campestris var narinosa, Canavalia gladiata DC semen and their combinational prescription is related to hemato-potentiating function using Sca-$1^+$ hematopoietic stem cells (Sca-$1^+HSCs$) as a testing system. Methods : Sca-$1^+HSCs$ isolated from femur in C57bl/6 mice with leukopenia and thrombocytopenia induced by cyclophosphamide (CTX). Then, Real-time PCR was performed to measure the mRNA expression, ELISA and haematopoiesis-related gene (EPO, TPO, IL-3, SCF, c-kit, GM-CSF), the phosphorylation of JAK2, GATA-1 and STAT-5a/b were observed by western blot, and the numbers of $CD117^+/Sca-1^+$ cell and the number of granulocyte erythrocyte monocyte macrophage colony-forming units (CFU-GEMM) and erythroid burst forming units (BFU-E), semisolid clonogenic assay was performed. Result : When Sca-$1^+HSCs$ were treated with Brassica campestris var narinosa, Canavalia gladiata DC semen and their combinational prescription with rIL-3/rSCF, the expression of haematopoiesis-related (EPO, TPO, IL-3, SCF, c-kit, and GM-CSF) were significantly increased at the levels of mRNA as well as production in Sca-$1^+HSCs$. Additionally, CGS enhanced phosphorylation of JAK2, GATA-1, and signal transducer and activator of transcription-5a/b (STAT-5a/b) in Sca-$1^+HSCs$. Furthermore, their combinational prescription (BCN+CGD) significantly enhanced the growth rate of granulocyte erythrocyte monocyte macrophage colony-forming units (CFU-GEMM) and erythroid burst forming units (BFU-E) in vitro. Conclusion : These result suggest that Brassica campestris var narinosa (BCN) and Canavalia gladiata DC have hematopoietic enhancement via hematopoietic cytokine-mediated JAK2/GATA-1/STAT-5a/b pathway, and their combinational prescription (BCN+CGD) has superior hematopoietic enhancement to those of individual extracts.

Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells

  • Guan, Feng;Ding, Youming;He, Yikang;Li, Lu;Yang, Xinyu;Wang, Changhua;Hu, Mingbai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.457-468
    • /
    • 2022
  • It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.

Anti-inflammatory Effect of Morinda citrifolia on LPS-induced Inflammation in RAW 264.7 Cells Through the JAK/STAT Signaling Pathway (JAK/STAT 신호전달 경로를 통한 LPS 유도 RAW 264.7 세포의 염증에 대한 노니의 항염증 효과)

  • Jo, Beom Gil;Bang, In Seok
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • This study investigated whether or not the major bioactive compounds of Noni (Morinda citrifolia) are involved in anti-inflammatory activity through the JAK/STAT upper signaling pathway in RAW 264.7 cells. The experimental results show that the M. citrifolia ethyl acetate fraction (Mc-EtOAc) obtained by sequential fractionation with organic solvents from the plant's dried fruits exhibits the highest antioxidant activity. In addition, the cytoprotective effects of Mc-EtOAc against H2O2-induced oxidative stress in the RAW 264.7 cells suppressed cytotoxicity in a dose-dependent manner. The group pretreated with Mc-EtOAc at a concentration of 240 ㎍/ml showed higher cell viability of 84.5%, compared to 71.6% in the LPS-treated group, and LPS-induced NO production decreased to half the amount in the positive control group. Mc-EtOAc treatment also led to a significant dose-dependent reduction in iNOS expression. Although COX-2 expression was increased by 300% following LPS induction, it was significantly decreased in a dose-dependent manner by pretreatment with Mc-EtOAc at concentrations of 120 and 240 ㎍/ml. An inhibition of the mRNA expression of pro-inflammatory cytokines IL-1β and TNF-α was observed. The investigation also revealed that the phosphorylation levels of pJAK1 and pSTAT3 in LPS-induced RAW 264.7 cells were significantly reduced by Mc-EtOAc treatment.

Domperidone Exerts Antitumor Activity in Triple-Negative Breast Cancer Cells by Modulating Reactive Oxygen Species and JAK/STAT3 Signaling

  • Rajina Shakya;Mi Ran Byun;Sang Hoon Joo;Kyung-Soo Chun;Joon-Seok Choi
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.692-699
    • /
    • 2023
  • The lack of molecular targets hampers the treatment of triple-negative breast cancer (TNBC). In this study, we determined the cytotoxicity of domperidone, a dopamine D2 receptor (DRD2) antagonist in human TNBC BT-549 and CAL-51 cells. Domperidone inhibited cell growth in a dose- and time-dependent manner. The annexin V/propidium iodide staining showed that domperidone induced apoptosis. The domperidone-induced apoptosis was accompanied by the generation of mitochondrial superoxide and the down-regulation of cyclins and CDKs. The apoptotic effect of domperidone on TNBC cells was prevented by pre-treatment with Mito-TEMPO, a mitochondria-specific antioxidant. The prevention of apoptosis with Mito-TEMPO even at concentrations as low as 100 nM, implies that the generation of mitochondrial ROS mediated the domperidone-induced apoptosis. Immunoblot analysis showed that domperidone-induced apoptosis occurred through the down-regulation of the phosphorylation of JAK2 and STAT3. Moreover, domperidone downregulated the levels of D2-like dopamine receptors including DRD2, regardless of their mRNA levels. Our results support further development of DRD2 antagonists as potential therapeutic strategy treating TNBC.

NDRG2-mediated Modulation of SOCS3 and STAT3 Activity Inhibits IL-10 Production

  • Lee, Eun-Byul;Kim, Ae-Yung;Kang, Kyeong-Ah;Kim, Hye-Ree;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.219-229
    • /
    • 2010
  • Background: N-myc downstream regulated gene 2 (NDRG2) is a member of the NDRG gene family. Our previous report indicated a possible role for NDRG2 in regulating the cytokine, interleukin-10 (IL-10), which is an important immunosuppressive cytokine. Several pathways, including p38-MAPK, NF-${\kappa}B$, and JAK/STAT, are used for IL-10 production, and the JAK/STAT pathway can be inhibited in a negative feedback loop by the inducible protein, SOCS3. In the present study, we investigated the effect of NDRG2 gene expression on IL-10 signaling pathway that is modulated via SOCS3 and STAT3. Methods: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 in IL-10 production. U937 cells were also transfected with SOCS3- or NDRG2-specific siRNAs to examine whether the knockdown of SOCS3 or NDRG2 influenced IL-10 expression. Lastly, STAT3 and SOCS3 induction was measured to identify the signaling pathway that was associated with IL-10 production. Results: RT-PCR and ELISA assays showed that IL-10 was increased in U937-mock cells upon stimulation with PMA, but IL-10 was inhibited by overexpression NDRG2. After PMA treatment, STAT3 phosphorylation was decreased in a time-dependent manner in U937-mock cells, whereas it was maintained in U937-NDRG2 cells. SOCS3 was markedly reduced in U937-NDRG2 cells compared with U937-mock cells. IL-10 production after PMA stimulation was reduced in U937 cells when SOCS3 was inhibited, but this effect was less severe when NDRG2 was inhibited. Conclusion: NDRG2 expression modulates SOCS3 and STAT3 activity, eventually leading to the inhibition of IL-10 production.

Ethyl Acetate Fraction of Adenophora triphylla var. japonica Inhibits Migration of Lewis Lung Carcinoma Cells by Suppressing Macrophage Polarization toward an M2 Phenotype

  • Park, Shin-Hyung
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2019
  • Objectives: It is reported that tumor-associated macrophages (TAMs) contribute to cancer progression by promoting tumor growth and metastasis. The purpose of this study is to investigate the effect of different fractions of Adenophora triphylla var. japonica (AT) on the polarization of macrophages into the M2 phenotype, a major phenotype of TAMs. Methods: We isolated hexane, ethyl acetate, and butanol fractions from crude ethanol extract of AT. The cytotoxicity of AT in RAW264.7 cells was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RAW264.7 cells were polarized into the M2 phenotype by treatment with interleukin (IL)-4 and IL-13. The expression of M2 macrophage marker genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The phosphorylation level of signal transducer and activator of transcription 6 (STAT6) was investigated by western blot analysis. The migration of Lewis lung carcinoma (LLC) cells was examined by transwell migration assay using conditioned media (CM) collected from RAW264.7 cells as a chemoattractant. Results: Among various fractions of AT, the ethyl acetate fraction of AT (EAT) showed the most significant suppressive effect on the mRNA expression of M2 macrophage markers, including arginase-1, interleukin (IL)-10 and mannose receptor C type 1 (MRC-1), up-regulated by treatment of IL-4 and IL-13. In addition, EAT suppressed the phosphorylation of STAT6, a critical regulator of IL-4 and IL-13-induced M2 macrophage polarization. Finally, the increased migration of Lewis lung carcinoma (LLC) cells by CM from M2-polarized RAW264.7 cells was reduced by CM from RAW264.7 cells co-treated with EAT and M2 polarization inducers. Conclusion: We demonstrated that EAT attenuated cancer cell migration through suppression of macrophage polarization toward the M2 phenotype. Additional preclinical or clinical researches are needed to evaluate its regulatory effects on macrophage polarization and anti-cancer activities.

Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells

  • Liao, Xian-Dong;Zhou, Chang-Hai;Zhang, Jing;Shen, Jing-Lin;Wang, Ya-Jing;Jin, Yong-Cheng;Li, Sheng-Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1012-1022
    • /
    • 2020
  • Objective: Caseins and fatty acids of milk are synthesized and secreted by the epithelial cells of the mammary gland. All-trans retinoic acid (ATRA), an active metabolite of vitamin A, has been shown to promote mammary development. This study was conducted to determine the effect of ATRA on casein synthesis and fatty acid composition in MAC-T cells. Methods: MAC-T cells were allowed to differentiate for 4 d, treated with ATRA (0, 1.0, 1.5, and 2.0 μM), and incubated for 3 d. We analyzed the fatty acid composition, the mRNA expression of casein and fatty acid synthesis-related genes, and the phosphorylation of casein synthesis-related proteins of MAC-T cells by gas chromatography, quantitative polymerase chain reaction, and western blotting, respectively. Results: In MAC-T cells, ATRA increased the mRNA levels of αS1-casein and β-casein, janus kinase 2 (JAK2) and E74-like factor 5 of the signal transducer and activator of transcription 5 β (STAT5-β) pathway, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 of the mammalian target of rapamycin (mTOR) pathway, inhibited the mRNA expression of phosphoinositide 3-kinase and eukaryotic initiation factor 4E of the mTOR pathway, and promoted the phosphorylation of STAT5-β and S6K1 proteins. Additionally, ATRA increased the de novo synthesis of fatty acids, reduced the content of long-chain fatty acids, the ratio of monounsaturated fatty acids to saturated fatty acids (SFA), the ratio of polyunsaturated fatty acids (PUFA) to SFA, and the ratio of ω-6 to ω-3 PUFA. The mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, lipoprotein lipase, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor gamma, and sterol regulatory element-binding protein 1 (SREBP1) were enhanced by ATRA. Conclusion: ATRA promotes the synthesis of casein by regulating JAK2/STAT5 pathway and downstream mTOR signaling pathway, and it improves the fatty acid composition of MAC-T cells by regulating SREBP1-related genes.

Effect of KH-BaRoKer-SeongJangTang based on traditional medicine theory on longitudinal bone growth

  • Kim, Min-Ho;Jeong, Hyeonseok;Park, Myungduek;Moon, Phil-Dong
    • CELLMED
    • /
    • v.4 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2014
  • KH-BaRoKer-SeongJangTang (KBS) is a recently developed formulation by using traditional drugs considering traditional medical theory of Oriental books such as ShinNongBonChoGyeong and JuRye, which has been used to improve the growth of child in Korea. Although KBS is usually prescribed to many children who are in retard for their age, its pharmacological effects have not been fully understood in experimental models. The aim of this study was to evaluate the effects of KBS on bone growth. Growth plate thickness and bone parameters such as bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connection density (Conn.D), and total porosity were analyzed by means of microcomputed tomography. Serum insulin-like growth factor-I (IGF-I) levels were measured by enzyme-linked immunosorbent assay. Hepatic IGF-I mRNA expression was analyzed by real-time polymerase chain reaction. Phosphorylation of signal transducer and activator of transcription5 (STAT5) was investigated using Western blot analysis and immunohistochemistry. The thickness of growth plate was increased by KBS. BV/TV, Tb.Th, TbN, Conn.D, and total porosity were improved by KBS. Hepatic IGF-I mRNA and serum IGF-I levels were elevated by KBS. Phosphorylation of STAT5 was increased with administration of KBS. These results suggest that KBS would be helpful to children who are in retard for their age through the elevation of IGF-I.