• Title/Summary/Keyword: STAT3 pathways

Search Result 46, Processing Time 0.021 seconds

Effects of Pinelliae Rhizoma on Gene Expression of Lung Tissue from Asthma induced Mice (반하가 천식이 유발된 생쥐 폐조직의 유전자 발현에 미치는 영향)

  • Lee, Myung-Jin;Kim, Jong-Han;Choi, Jeong-Hwa;Park, Su-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.36-51
    • /
    • 2008
  • Objective : This study investigated the effects of PR(Pinelliae Rhizoma) on gene expression of lung tissue resected from asthma induced mice using intra-nasal instillation. Methods : Gene expression levels were measured using a microarray technique, and a functional analysis on these genes was conducted. Results : A total of 3270 genes were up-regulated or down-regulated, 860 genes which were lowered by induction of asthma were restored to those of naive animals, Furthermore hand, 1235 genes were lowered to normal levels, which were elevated by induction of asthma. Most of changed genes were involved in signalling pathways. Genes in which expression levels were restored by oral administration of PR were involved in MAPK pathway, focal adhesion, and regulation of actin cytoskeleton etc. Genes of which expression levels were lowered by oral administration of PR were involved in rhodopsin-like receptor activity, zinc ion binding and ATP binding. These genes were also involved in neuroactive ligand receptor interaction, the JAK-STAT signaling pathway and also the T-cell receptor signaling pathway. Conclusion : These results demonstrate the strong possibility that the mechanisms of PR on asthma are involved in neuroactive ligand receptor interaction pathway or related molecules.

  • PDF

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Anti-cancer Effects and Molecular Mechanisms of Withaferin A (Withaferin A의 다양한 항암 효과 및 분자생화학적 기전)

  • Woo, Seon Min;Min, Kyoung-Jin;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.462-469
    • /
    • 2013
  • Withaferin A is a steroidal lactone purified from the Indian medicinal plant Withania somnifera. It exhibits a wide variety of activities, including anti-tumor, anti-inflammation, and immunomodulation properties. In this review, we focused on the anti-cancer effects of withaferin A. Withaferin A inhibits cell proliferation, metastasis, invasion, and angiogenesis in cancer cells. Furthermore, it sensitized irradiation, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-, and doxorubicin-mediated apoptosis. The results showed that multiple mechanisms were involved in withaferin A-mediated anti-cancer effects. First, withaferin A increased intracellular reactive oxygen species (ROS) production and induced ER stress- and mitochondria-mediated apoptosis. Second, withaferin A inhibited the signaling pathways (Jak/STAT, Akt, Notch, and c-Met), which are important in cell survival, proliferation, and metastasis. Third, it induced apoptosis and inhibited cancer cell migration through the up-regulation of prostate apoptosis protein-4 (Par-4). Finally, withaferin A up-regulated pro-apoptotic protein expression levels through the inhibition of proteasome activity. Our findings suggested that withaferin A is a potential, potent therapeutic agent.

Bioinformatic Prediction of SNPs within miRNA Binding Sites of Inflammatory Genes Associated with Gastric Cancer

  • Song, Chuan-Qing;Zhang, Jun-Hui;Shi, Jia-Chen;Cao, Xiao-Qin;Song, Chun-Hua;Hassan, Adil;Wang, Peng;Dai, Li-Ping;Zhang, Jian-Ying;Wang, Kai-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.937-943
    • /
    • 2014
  • Polymorphisms in miRNA binding sites have been shown to affect miRNA binding to target genes, resulting in differential mRNA and protein expression and susceptibility to common diseases. Our purpose was to predict SNPs (single nucleotide polymorphisms) within miRNA binding sites of inflammatory genes in relation to gastric cancer. A complete list of SNPs in the 3'UTR regions of all inflammatory genes associated with gastric cancer was obtained from Pubmed. miRNA target prediction databases (MirSNP, Targetscan Human 6.2, PolymiRTS 3.0, miRNASNP 2.0, and Patrocles) were used to predict miRNA target sites. There were 99 SNPs with MAF>0.05 within the miRNA binding sites of 41 genes among 72 inflammation-related genes associated with gastric cancer. NF-${\kappa}B$ and JAK-STAT are the two most important signaling pathways. 47 SNPs of 25 genes with 95 miRNAs were predicted. CCL2 and IL1F5 were found to be the shared target genes of hsa-miRNA-624-3p. Bioinformatic methods could identify a set of SNPs within miRNA binding sites of inflammatory genes, and provide data and direction for subsequent functional verification research.

Transcriptome Network Analysis Reveals Potential Candidate Genes for Esophageal Squamous Cell Carcinoma

  • Ma, Zheng;Guo, Wei;Niu, Hui-Jun;Yang, Fan;Wang, Ru-Wen;Jiang, Yao-Guang;Zhao, Yun-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.767-773
    • /
    • 2012
  • The esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a poor prognosis. Understanding molecular changes in ESCC should improve identification of risk factors with different molecular subtypes and provide potential targets for early detection and therapy. Our study aimed to obtain a molecular signature of ESCC through the regulation network based on differentially expressed genes (DEGs). We used the GSE23400 series to identify potential genes related to ESCC. Based on bioinformatics we constructed a regulation network. From the results, we could establish that many transcription factors and pathways closely related with ESCC were linked by our method. STAT1 also arose as a hub node in our transcriptome network, along with some transcription factors like CCNB1, TAP1, RARG and IFITM1 proven to be related with ESCC by previous studies. In conclusion, our regulation network provided information on important genes which might be useful in investigating the complex interacting mechanisms underlying the disease.

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Decreased Expression of the Suppressor of Cytokine Signaling 6 in Human Hepatocellular Carcinoma

  • Bae, Hyun-Jin;Noh, Ji-Heon;Eun, Jung-Woo;Kim, Jeong-Kyu;Jung, Kwang-Hwa;Xie, Hong Jian;Ahn, Young-Min;Ryu, Jae-Chun;Park, Won-Sang;Lee, Jung-Young;Nam, Suk-Woo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Suppressors of cytokine signaling (SOCS) proteins were originally identified as negative feedback regulators of cytokine signaling and include the Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathways. Recent studies have shown that SOCS proteins negatively regulate the receptor tyrosine kinase (RTK) pathway including the insulin receptor (IR), EGFR, and KIT signaling pathways. In addition, SOCS1 and SOCS3 have been reported to have anti-tumor effects in human hepatocellular carcinoma (HCC). However, it is uncertain whether other members of the SOCS family are associated with tumor development and progression. In this study, to investigate whether SOCS6 is aberrantly regulated in HCC, we examined the expression level of SOCS6 in HCC by Western blot analysis and immunohistochemical staining. The results showed that SOCS6 was down-regulated in all examined HCCs compared to the corresponding normal tissues. In addition, expression of SOCS6 was observed in the cytoplasm of most normal and precancerous tissue, but not in the HCCs by immunohistochemical staining. This is first report to demonstrate that SOCS6 is aberrantly regulated in HCC. These findings suggest that underexpression of SOCS6 is involved in hepatocarcinogenesis, and SOCS6 may play a role, as a tumor suppressor, in HCC development and progression.

Conditioning-induced cardioprotection: Aging as a confounding factor

  • Randhawa, Puneet Kaur;Bali, Anjana;Virdi, Jasleen Kaur;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.467-479
    • /
    • 2018
  • The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha ($PGC-1{\alpha}$) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of $Na^+$ and $K^+$, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.