• Title/Summary/Keyword: SST prediction

Search Result 110, Processing Time 0.03 seconds

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

Performance Assessment of Weekly Ensemble Prediction Data at Seasonal Forecast System with High Resolution (고해상도 장기예측시스템의 주별 앙상블 예측자료 성능 평가)

  • Ham, Hyunjun;Won, Dukjin;Lee, Yei-sook
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.261-276
    • /
    • 2017
  • The main objectives of this study are to introduce Global Seasonal forecasting system version5 (GloSea5) of KMA and to evaluate the performance of ensemble prediction of system. KMA has performed an operational seasonal forecast system which is a joint system between KMA and UK Met office since 2014. GloSea5 is a fully coupled global climate model which consists of atmosphere (UM), ocean (NEMO), land surface (JULES) and sea ice (CICE) components through the coupler OASIS. The model resolution, used in GloSea5, is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, we evaluate the performance of this system using by RMSE, Correlation and MSSS for ensemble mean values. The forecast (FCST) and hindcast (HCST) are separately verified, and the operational data of GloSea5 are used from 2014 to 2015. The performance skills are similar to the past study. For example, the RMSE of h500 is increased from 22.30 gpm of 1 week forecast to 53.82 gpm of 7 week forecast but there is a similar error about 50~53 gpm after 3 week forecast. The Nino Index of SST shows a great correlation (higher than 0.9) up to 7 week forecast in Nino 3.4 area. It can be concluded that GloSea5 has a great performance for seasonal prediction.

Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows

  • Bertani, Gregorio;Patruno, Luca;Aguera, Fernando Gandia
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.499-510
    • /
    • 2022
  • Computational Wind Engineering has rapidly grown in the last decades and it is currently reaching a relatively mature state. The prediction of wind loading by means of numerical simulations has been proved effective in many research studies and applications to design practice are rapidly spreading. Despite such success, caution in the use of simulations for wind loading assessment is still advisable and, indeed, required. The computational burden and the know-how needed to run high-fidelity simulations is often unavailable and the possibility to use simplified models extremely attractive. In this paper, the applicability of some well-known 2D unsteady RANS models, particularly the k-ω SST, in the aerodynamic characterization of extruded bodies with bluff sections is investigated. The main focus of this paper is on the drag coefficient prediction. The topic is not new, but, in the authors' opinion, worth a careful revisitation. In fact, despite their great technical relevance, a systematic study focussing on sections which manifest a fully detached flow configuration has been overlooked. It is here shown that the considered 2D RANS exhibit a pathological behaviour, failing to reproduce the transition between reattached and fully detached flow regime.

Numerical Prediction of Unsteady Flows through Whole Nozzle-Rotor Cascade Channels with Partial Admission

  • Sasao, Yasuhiro;Monma, Kazuhiro;Tanuma, Tadashi;Yamamoto, Satoru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • This paper presents a numerical study for unsteady flows in a high-pressure steam turbine with a partial admission stage. Compressible Navier-Stokes equations are solved by the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe's approximate Riemann solver, and the LU-SGS scheme. The SST-model is also solved for evaluating the eddy-viscosity. The unsteady two-dimensional flows through whole nozzle-rotor cascade channels considering a partial admission are numerically investigated. 108 nozzle passages with two blockages and 60 rotor passages are simultaneously calculated. The influence of the flange in the nozzle box to the lift of rotors is predicted. Also the efficiency of the partial admission stage changing the number of blockages and the number of nozzles is parametrically predicted.

Second Kind Predictability of Climate Models

  • Chu, Peter C.;Lu, Shlhua
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.27-32
    • /
    • 2003
  • Atmospheric and oceanic numerical models are usually initial-value and/or boundary-value problems. Change in either initial or boundary conditions leads to a variation of model solutions. Much of the predictability research has been done on the response of model behavior to an initial value perturbation. Less effort has been made on the response of model behavior to a boundary value perturbation. In this study, we use the latest version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) to study the model uncertainty to tiny SST errors. The results show the urgency to investigate the second kind predictability problem for the climate models.

  • PDF

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect (공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Ryu, Gyeong-Joong;Kim, Dong-Hwan;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

A Case Study of Coastal Fog Event Causing Flight Cancellation and Traffic Accidents (항공기 결항과 연쇄 교통사고를 야기한 연안안개 사례 연구)

  • Kim, Young Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • A heavy foggy event accompanying with complex coastal fog was investigated in this study. This heavy foggy event occurred on FEB 11, 2015. Due to reduced visibility with this foggy event induced more than 100times serial traffic accidents over the Young-jong highway, and Flights from 04:30 AM to 10:00 AM were cancelled on Inchon International Airport. This heavy foggy event was occurred in synoptic and mesoscale environments but dense coastal fog were combined with a combination of sea fog, steam fog, and radiation fog. This kind of coastal fog can predicted by accurate analysis of the direction of the air flow, sea surface temperature(SST), and 925hPa isotherms from numerical weather prediction charts and real time analysis charts.

Thermal-Hydraulic Analysis of A Wire-Spacer Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.473-478
    • /
    • 2004
  • This work presents the Thermal Hydraulic analysis has been performed for a 19-pin wire-spacer fuel assembly using three-dimensional Reynolds-averaged Navier-Stokes equations. SST model is used as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary condition at inlet and outlet of the calculation domain. The overall results far a preliminary calculation show a good agreement with the experimental observations. It has been found that the major unidirectional flows are the axial velocity in sub-channels and the peripheral sweeping flows and the velocities are found to be following a cyclic path of period equal to the wire-wrap pitch. The temperature is found to be maximum in the central region and also, there exist a radial temperature gradient between the fuel rods. The major advantage of performing this kind of analysis is the prediction of thermal-hydraulic behavior of a fuel assembly with much ease.

  • PDF

Development of Atomization Spraying System for Solvent-free Paint(I) - Flow Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(I) - 유압 엑츄에이터의 유동해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this paper is to design a hydraulic actuator to operate under high pressure conditions. The flow characteristics under design conditions of hydraulic actuator were numerically conducted by commercial fluid dynamic code(ANSYS CFX V11). The numerical analysis was performed by transient technique according to the variation of stroke times, which was changed from 0 to 1 second by interval of 0.01. Turbulence model, $k-\omega$ SST was selected to secure more accurate prediction of hydraulic oil flow. The ICEM-CFD 11 and CFXMesher, reliable grid generation software was also adapted to secure high quality grid necessary for the reliable analysis. According to the simulation results, the flow rate which was supplied to the hydraulic actuator was 30.4l/min. These results are in good agreement with design results within 3.5% error.