• 제목/요약/키워드: SST k - ${\omega}$ model

검색결과 133건 처리시간 0.028초

CFX 코드에 의한 산업용 원심펌프 성능해석에 관한 연구 (A Study on the Performance Analysis of an Industrial Centrifugal Pump Using CFX Code)

  • 김명석;김범석;김진구;박권하;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.174-175
    • /
    • 2005
  • The purpose of this study is focused on the analysis of 3D complex flow and performance characteristics of a centrifugal pump with volute casing. The numerical analysis was performed by commercial code CFX-10 according to the variation of flow rate, which is changing from 5.847$m^3$/min to 6.865$m^3$/min. The rated rotational speed of close type impeller is 1750rpm. Turbulence model, k-${\omega}$ SST was selected to guaranty more accurate prediction of flow separation. The ICEM-CFD 10, reliable grid generation software was also adapted to secure high quality grid generation necessary for the reliable numerical simulation. The experimental results such as static head, brake horse power and efficiency of the centrifugal pump were compared with the numerical analysis results. The simulated results are good agreement with the experimental results less 5$%$ error.

  • PDF

해양광물자원 개발을 위한 사류형펌프의 내부유동 해석 (Internal Flow Analysis on a Mixed Flow Pump for Developing Marine Mineral Resources)

  • 이진우;최영도;이영호;윤치호;박종명
    • 한국유체기계학회 논문집
    • /
    • 제13권5호
    • /
    • pp.11-16
    • /
    • 2010
  • The development of lifting pumps that lift minerals to a mining vessel are one of the vital parts of the commercial mining process. The purpose of this study is to investigate internal flow and its effect on the performance of a mixed flow pump in order to improve the pump's performance. Numerical analysis was performed by commercial code of ANSYS CFX-11 based on flow rate and length of flexible hose. The rated rotational speed of the impeller is 1750rpm. For taking into account the turbulence, k-$\omega$ SST model was selected to guarantee more accurate prediction of flow separation. The simulated results are in good agreement with the experimental results and showed that its efficiency and the head of the pump are related mainly to the flow rate and the length of flexible hose. A lesser flow rate caused more secondary flow through the guide vane passage. The length of flexible hose and flow rate exert much more influence on the pump's performance than the shape of the flexible hose.

천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석 (CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect)

  • 조영희;장경식;신동진;박수형
    • 한국항공우주학회지
    • /
    • 제42권7호
    • /
    • pp.535-543
    • /
    • 2014
  • 비세장형, 둥근 앞전을 가지고 스팬이 1.0m로 축소된 BWB형 UCAV에 대해 완전난류, 천이 모델을 사용하여 전산해석을 수행하였다. 자유류는 받음각 -4도부터 26도까지 50m/s이며, 평균 시위 기준 레이놀즈수는 $1.25{\times}10^6$이다. 멀티블록 6면체 격자와 함께 완전난류 모델과 천이 모델의 결과를 비교하여 천이효과가 공력 특성에 미치는 영향을 살펴보았다. 풍동 실험과 비교한 결과 양/항력 계수는 해석범위 내에서 잘 일치하였으며, 피칭 모멘트는 높은 받음각에서 작게 예측됨과 동시에 난류모델에 따라 결과가 크게 달라졌다. 압력분포와 skin friction line, 축 방향 속도장을 이용하여 와류구조의 거동과 천이현상이 미치는 영향을 살펴본 결과, 천이효과를 고려하는 것이 UCAV의 정확한 와류 구조와 공력특성 예측에 필요한 것으로 확인하였다.

An innovative approach for the numerical simulation of oil cooling systems

  • Carozza, A.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.169-182
    • /
    • 2015
  • Aeronautics engine cooling is one of the biggest problems that engineers have tried to solve since the beginning of human flight. Systems like radiators should solve this purpose and they have been studied extensively and various solutions have been found to aid the heat dissipation in the engine zone. Special interest has been given to air coolers in order to guide the air flow on engine and lower the high temperatures achieved by the engine in flow conditions. The aircraft companies need faster and faster tools to design their solutions so the development of tools that allow to quickly assess the effectiveness of an cooling system is appreciated. This paper tries to develop a methodology capable of providing such support to companies by means of some application examples. In this work the development of a new methodology for the analysis and the design of oil cooling systems for aerospace applications is presented. The aim is to speed up the simulation of the oil cooling devices in different operative conditions in order to establish the effectiveness and the critical aspects of these devices. Steady turbulent flow simulations are carried out considering the air as ideal-gas with a constant-averaged specific heat. The heat exchanger is simulated using porous media models. The numerical model is first tested on Piaggio P180 considering the pressure losses and temperature increases within the heat exchanger in the several operative data available for this device. In particular, thermal power transferred to cooling air is assumed equal to that nominal of real heat exchanger and the pressure losses are reproduced setting the viscous and internal resistance coefficients of the porous media numerical model. To account for turbulence, the k-${\omega}$ SST model is considered with Low- Re correction enabled. Some applications are then shown for this methodology while final results are shown in terms of pressure, temperature contours and streamlines.

고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산 (Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas)

  • 진상욱;나재정;이상호;이규준;임진식;김성돈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.231-234
    • /
    • 2010
  • 고온의 연소가스에 노출되는 디퓨저 냉각에 필요한 열량을 계산하였다. 디퓨저 내부는 공기와 혼합된 연소가스가 흐르고 디퓨저 벽체는 채널로 구성된 공간에 물이 흐르도록 되어 있다. 디퓨저 구조물과 유체 간에 또는 유체 자체적인 열전달과 구조물 내부의 열전달 현상은 복합적인 형태로 나타나는데 고온에서 작동하는 점을 고려하여 복사, 대류, 전도 모두를 적용 하였다. 열전달량 계산은 경험식에 근거한 1차원 해석과 CFD 해석의 2가지 방법으로 수행하였다. 1차원 해석은 경험식을 통해 얻어진 결과를 적용하여 열전달량을 산출하였고, CFD 해석은 DO 복사 열전달 모델을 적용하여 계산하였으며, 계산의 타당성을 검정하기 위하여 두 방법을 비교하였다. 총 열전달량의 차이는 1% 미만으로 거의 같았으나, 1차원 계산은 열전달 모델의 단순화로 디퓨저 입구에서의 순환영역을 구현하지 못하여 전체적인 열전달량 분포에서는 차이를 보였다. 디퓨저의 안정성을 확보하기 위한 냉각수 용량은 2가지 계산 결과를 조합하여 각 구간별로 최대 열전달량을 근거로 도출하였다.

  • PDF

전진비가 추진기 후류에 미치는 영향 (Effect of the Advance Ratio on the Evolution of Propeller Wake)

  • 백동근;윤현식;정재환;김기섭;백부근
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.1-7
    • /
    • 2014
  • The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석 (Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine)

  • 김진욱;박정규;강영석;조진수
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

제어핀이 달린 수중 물체의 공동 수치해석 (Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins)

  • 김형태;최은지;강경태;윤현걸
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

Study of Stay Vanes Vortex-Induced Vibrations with different Trailing-Edge Profiles Using CFD

  • Neto, Alexandre D'Agostini;Saltara, Fabio
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.363-374
    • /
    • 2009
  • The 2D flow around 13 similar stay-vane profiles with different trailing edge geometries is investigated to determinate the main characteristics of the excitation forces for each one of them and their respective dynamic behaviors when modeled as a free-oscillating system. The main goal is avoid problems with cracks of hydraulic turbines components. A stay vane profile with a history of cracks was selected as the basis for this work. The commercial finite-volume code $FLUENT^{(R)}$ was employed in the simulations of the stationary profiles and, then, modified to take into account the transversal motion of elastically mounted profiles with equivalent structural stiffness and damping. The k-$\omega$ SST turbulence model is employed in all simulations and a deforming mesh technique used for models with profile motion. The static-model simulations were carried out for each one of the 13 geometries using a constant far field flow velocity value in order to determine the lift force oscillating frequency and amplitude as a function of the geometry. The free-oscillating stay-vane simulations were run with a low mass-damping parameter ($m^*{\xi}=0.0072$) and a single mean flow velocity value (5m/s). The structural bending stiffness of the stay-vane is defined by the Reduced Velocity parameter (Vr). The dynamic analyses were divided into two sets. The first set of simulations was carried out only for one profile with $2{\leq}Vr{\leq}12$. The second set of simulations focused on determining the behavior of each one of the 13 profiles in resonance.

CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석 (Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD)

  • 정종길;김광추;윤준규
    • 대한기계학회논문집B
    • /
    • 제41권10호
    • /
    • pp.649-657
    • /
    • 2017
  • 고압의 파이프 파단 시 파이프 내에 있던 유체가 고속으로 대기로 분출될 때 압축성유동을 동반하는 초음속제트가 발생한다. 이러한 초음속제트는 일반적으로 복잡한 비정상거동을 보여줄 수 있다. 본 연구는 이러한 고압파이프에서 분출되는 초음속제트에 의해 생성되는 압축성유동을 고찰하기 위하여 전산유체역학 해석이 수행되었다. 분출기체의 종류 및 파이프직경 변화에 따른 비정상유동 특성을 해석하기 위해 SST $k-{\omega}$ 난류모델이 채택되었다. 전산해석 시 기본 경계조건은 파이프직경 10 cm, 제트 압력비 5, 기체온도 300 K로 가정하였다. 그 해석결과로 초음속제트로 인해 생성되는 충격파의 거동이 관찰되었고, 간접적인 영향으로 폭풍파도 발생됨을 알 수 있었다. 기체의 분자량이 가장 작은 $H_2$의 압력파 특성은 안전영역까지의 거리가 가장 짧았으며, 분자량이 비슷한 $N_2$, 공기 및 $O_2$는 큰 차이가 없었다. 또한 파이프직경이 커져 제트에 의한 영향범위도 더욱 증대됨을 알 수 있었다.