• Title/Summary/Keyword: SST k - ${\omega}$ 모델

Search Result 68, Processing Time 0.019 seconds

A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger (외부유로 내벽에 설치된 핀 형상에 따른 이중관 열교환기의 열전달 및 유동에 대한 수치해석적 연구)

  • Park, Chun Dong;Lee, Dong Hyun;Park, Byung-Sik;Choi, Jaejoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST $k-{\omega}$ turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, $S_f$, 0.3.

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

Evaluation of Wind Force Coefficients of a Box-Type Girder Bridge with Noise Barriers (방음벽의 유무에 따른 박스형 거더교의 풍력계수 평가)

  • Jeong, Seung Hwan;Lee, Youngki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • In the study, computational fluid dynamics analysis was performed to estimate wind force coefficients for a box-type concrete girder bridge under the influence of wind. The drag, lift and pitching moment coefficients were obtained for the bridge section without noise barrier and compared with those of the bridge section with noise barriers of various heights. The shear stress transport $k-{\omega}$ turbulence model was employed to estimate the wind force coefficients, and the contribution of the friction drag force to the total drag force was investigated. It was found from the study that the drag force coefficients increased as the height of noise barrier increased when a wind blew horizontally, and that the contribution of the friction drag force was highest for the bridge section without noise barrier. It is concluded that the impact of the height of noise barriers should be considered in the design of bridges, and the friction force played an important role in evaluating wind forces on bridges.

Numerical Analysis on Shock Waves Influence Generated by Supersonic Jet Flow According to Working Fluids (작동유체에 따른 초음속 제트유동에 의해 생성되는 충격파 영향에 관한 수치해석)

  • Jung, Jong-Kil;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.510-517
    • /
    • 2016
  • Supersonic jet technology using high pressures has been popularly utilized in diverse industrial and engineering areas related to working fluids. In this study, to consider the effects of a shock wave caused by supersonic jet flow from a high pressure pipe, the SST turbulent flow model provided in the ANSYS FLUENT v.16 was applied and the flow characteristics of the pressure ratio and Mach number were analyzed in accordance with the working fluids (air, oxygen, and hydrogen). Before carrying out CFD (Computational Fluid Dynamics) analysis, it was presumed that the inlet gas temperature was 300 K and pressure ratio was 5 : 1 as the boundary conditions. The density function was derived from the ideal gas law and the viscosity function was derived from Sutherland viscosity law. The pressure ratio along the ejection distance decreased more in the lower density working fluids. In the case of the higher density working fluids, however, the Mach number was lower. This shows that the density of the working fluids has a considerable effect on the shock wave. Therefore, the reliability of the analysis results were improved by experiments and CFD analysis showed that supersonic jet flow affects the shock wave by changing shape and diameter of the jet, pressure ratio, etc. according to working fluids.

CFD Analysis on Base Region of Small Scaled 4 Nozzle Clustered Engine Configuration (CFD를 이용한 축소형 공기 클러스터드 노즐의 저부 유동 분석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • Flow characteristics of base region of small scaled 4 nozzle clustered engine has been analyzed with CFD approach along with the tests of numerical methods. The numerical test shows that Spalart-Allmaras turbulence model is appropriate for the present research. Plumes expanded from nozzles exits collide with each other and make high pressure stagnation region. Some of collided plumes expand again reversely into the base region with supersonic speeds. The reversed plume in the base region goes out to the outer region through the minimum vent area formed by the nearest nozzle exterior surfaces. But different from the empirical theory, the minimum vent area does not play a role of throat. Additionally the temperature of the nozzle inner surface strongly affects the temperature of the reversed plumes.

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Evaluation of Flutter Velocity of Bridge Deck Section using Distributed Computing Environment (분산형 전산환경을 활용한 교량 거더의 플러터 발생풍속 산정)

  • Lee, Kuen-Bae;Kim, Chongam
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.75-75
    • /
    • 2011
  • 본 논문에서는 진동중인 교량 거더에 작용하는 풍하중을 산정하고 그에 따른 플러터 발생풍속을 예측하기 위하여 분산형 전산환경을 활용한 수치해석 연구를 수행하였다. 분산형 전산환경은 웹 포탈을 기반으로 수치해석 환경을 제공하는 수치풍동 시스템으로서, 전산유체역학(CFD : Computational Fluid Dynamics)에 대한 전문지식이 부족한 사용자들도 격자생성, 수치해석자를 이용한 계산, 가시화 등의 전 과정을 편리하게 수행할 수 있는 차세대 토목분야 연구 환경이다. 본 시스템은 그리드스피어(GfidSphere)를 기반으로 구성되었으며, 기본적으로 사용자 관리, 세션 관리, 그룹 관리, 레이아웃 관리 등을 제공하여 사용자가 포탈을 통해서 다양한 서비스를 쉽게 사용할 수 있는 환경을 구축하도록 도와준다. 수치해석을 위한 유체 지배방정식은 2차원 비정상 비압축성 RANS(Reynolds-Averaged Navier-Stokes) 방정식이며, pseudo compressibility 방법을 적용하였다. 비정상 유동장을 해석하기 위하여 이중시간 전진법(dual time stepping)을 사용하였으며, 수렴가속화를 위해 Multi-grid 기법을 적용하였다. 또한 난류 유동장 해석을 위해서 $k-{\omega}$ SST 난류 모델을 사용하였으며, 난류 천이 과정에서의 유동을 모사하기 위하여 Total stress limitation 방법을 적용하였다. 교량 거더의 연직과 회전방향의 2자유도 움직임을 모사하기 위하여 동적격자 기법을 도입하였다. 교량 거더 주변의 비정상 유동해석 결과를 통해, 거더 표면에서 떨어져나가는 크고 작은 와류의 영향으로 양력 및 모멘트 계수 그래프가 중첩된 진폭과 주기를 갖고 주기적으로 나타나는 것을 확인할 수 있었다. 또한 계산된 비정상 공기력을 적용한 2자유도 플러터 방정식을 통하여 플러터 발생풍속을 산정하였다. 최종적으로 본 연구에서 계산된 결과의 타당성을 검증하기 위하여 수치적으로 구한 플러터 발생풍속과 기존의 실험 및 수치해석 결과를 비교하였으며, 결과는 잘 일치하였다.

  • PDF