• 제목/요약/키워드: SSR Marker

검색결과 175건 처리시간 0.024초

Analysis of Genetic Diversity and Population Structure of Buckwheat (Fagopyrum esculentum Moench) Landraces of Korea Using SSR Markers

  • Song, Jae-Young;Lee, Gi-An;Yoon, Mun-Sup;Ma, Kyung-Ho;Choi, Yu-Mi;Lee, Jung-Ro;Jung, Yeon-Ju;Park, Hong-Jae;Kim, Chung-Kon;Lee, Myung-Chul
    • 한국자원식물학회지
    • /
    • 제24권6호
    • /
    • pp.702-711
    • /
    • 2011
  • Buckwheat (Fagopyrum esculentum Moench), one of the minor crops grown in Korea belonging to the Polygonaceae family, is an annual crop widely cultivated in Asia, Europe, and America and has a character of outcrossing and self-incompatibility. The objective of this study was to analyze the genetic variability, phylogenetic relationships and population structure of buckwheat landraces of Korea using SSR markers. Ten microsatellite markers have been detected from a total of 79 alleles among the 179 buckwheat accessions were collected from Korea. The number of allele per marker locus ($N_A$) ranged from 2 (GB-FE-001, GB-FE-043 and GB-FE-055) to 31 (GB-FE-035) with an average of 7.9 alleles. GB-FE-035 was the most polymorphic with the highest PIC value 0.93. Major allele frequencies ($M_{AF}$) for the 10 polymorphic loci varied from 0.12 to 0.97 with a mean allele frequency of 0.57. The expected heterozygosity ($H_E$) values ranged from 0.05 to 0.94 with an average of 0.53. The observed heterozygosity ($H_O$) ranged from 0.06 to 0.92 with an average of 0.42. The overall polymorphic information contents (PIC) values ranged from 0.05 to 0.93 with an average of 0.48. The landrace accessions of buckwheat used in the present study were not distinctly grouped according to geographic distribution. The study concludes that the results revealed genetic differentiation was low according to the geographic region because of outcrossing and self-incompatibility. We reported that our analyses on the genetic diversity of common buckwheat cultivars of Korea were performed by using of microsatellite markers.

QTL Analysis of Soybean Seed Weight Using RAPD and SSR Markers

  • Chung, Jong-Il;Ko, Mi-Suk;Kang, Jin-Ho
    • Plant Resources
    • /
    • 제3권3호
    • /
    • pp.184-193
    • /
    • 2000
  • Soybean [Glycine max (L.) Merr.] seed weight is a important trait in cultivar development. Objective of this study was to identify and confirm quantitative trait loci (QTLs) for seed weight variation in the F2 and F2:3 generations. QTLs for seed weight were identified in F2 and F2:3 generations using interval mapping (MapMaker/QTL) and single-factor analysis of variance (ANOVA). In the F2 plant generation (i.e., F3 seed), three markers, OPL9a, OPM7a, and OPAC12 were significantly (P<0.01) associated with seed weight QTLs. In the F2:3 plant row generation (i.e., F4 seed), five markers, OPA9a, OPG19, OPL9b, OPP11, and Sat_085 were significantly (P<0.01) associated with seed weight QTLs. Two markers, OPL9a and OPL9b were significantly (P<0.05) associated with seed weight QTLs in both generations. Two QTLs on USDA soybean linkage group C1 and R were identified in both F2 and F2:3 generations using interval mapping. The linkage group C1 QTL explained 16% of the variation in seed weight in both generations, and the linkage group R QTL explained 39% and 41% of the variation for F2 and F2:3 generation, respectively. The linkage group C2 QTL identified in F2:3 generation explained 14.9% of variation. Linkage groups C1, C2 and R had previously been identified as harbouring seed size QTLs. The consistency of QTLs across generations and populations indicates that marker-assisted selection is possible in a soybean breeding program.

  • PDF

Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate

  • Mahmoud, Amer F.;Hassan, Mohamed I.;Amein, Karam A.
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.402-413
    • /
    • 2015
  • Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

Identification of Molecular Markers for Photoblastism in Weedy Rice

  • Lee, Hyun-Sook;Ahn, Sang-Nag;Sasaki, Kazuhiro;Chung, Nam-Jin;Choi, Kwan-Sam;Sato, Tadashi
    • 한국육종학회지
    • /
    • 제42권2호
    • /
    • pp.144-150
    • /
    • 2010
  • The objective of this study was to map gene/QTL for photoblastism in a weedy rice (photoblastic rice: PBR) using DNA markers. Light-induced effect on germination of seeds was compared among three accessions (Oryza sativa L.), PBR, Milyang 23 and Ilpum. Results showed that PBR seeds started to show photoblastism during seed development, different from Ilpum and Milyang 23. Frequency distribution of germination in the F4 lines from crosses between Ilpum and PBR and, Milyang 23 and PBR revealed bimodal distributions suggesting that photoblastism was controlled by a few genes. Bulked segregant analysis using $F_4$ populations derived from the above two crosses was conducted to identify gene/QTL for photoblastism. Two QTL were identified on chromosomes 1 and 12 explaining 11.2 and 12.8% of the phenotypic variance, respectively. Two QTL were further mapped between two SSR markers, RM8260 and RM246 on chromosome 1, and between RM270 and 1103 on chromosome 12. It is noteworthy that two QTL for photoblastism were colocalized with the QTL for seed dormancy reported in the previous QTL studies. The clustering of two genes for photoblastism and dormancy possibly indicates that these regions constitute rice phytochrome gene clusters related to germination. Because PBR has a low degree of dormancy, a pleiotropic effect of a single gene controlling dormancy and photoblastism can be ruled out. The linked markers will provide the foundation for positional cloning of the gene.

Development and Evaluation of QTL-NILs for Grain Weight from an Interspecific Cross in Rice

  • Yun, Yeo-Tae;Kim, Dong-Min;Park, In-Kyu;Chung, Chong-Tae;Seong, Yeaul-Kyu;Ahn, Sang-Nag
    • 한국육종학회지
    • /
    • 제42권4호
    • /
    • pp.357-364
    • /
    • 2010
  • In a previous study, we mapped 12 QTLs for 1,000 grain weight (TGW) in the 172 $BC_2F_2$ lines derived from a cross between Oryza sativa ssp. Japonica cv. Hwaseongbyeo and O. rufipogon. These QTLs explained 5.4 - 11.4% of the phenotypic variance for TGW. Marker-aided selection combined with backcrosses was employed to develop QTL-NILs for each QTL. $BC_2F_2$ lines with each target QTL were backcrossed to Hwaseongbyeo twice and then allowed to self to produce $BC_4F_5$ populations. SSR markers linked to TGW were employed to select QTL-NILs with the respective target QTL. Six QTL-NILs with the recurrent parent, Hwaseongbyeo were evaluated for nine traits for three years from 2007 and 2009. Differences were observed between each of the 6 QTL-NILs and Hwaseongbyeo in TGW. In addition to TGW, these QTL-NILs displayed differences in other agronomic traits possibly indicating a tight linkage of genes controlling these traits. The direction of the QTL for TGW in 6 QTL-NILs was consistent as in the $BC_2F_2$ lines from the same cross. Difference in TGW between each of the QTL-NILs and Hwaseongbyeo was associated with the difference in one or two grain shape traits; grain length, grain width, and grain thickness. SSR markers linked to the QTL for TGW will facilitate selection of the grain shape character in a breeding program to diversify grain shape and provide the foundation for map-based gene isolation. Also, the QTL-NILs developed in this report and the progenies from crosses between the QTL-NILs will be useful in clarifying epistatic interactions among QTLs for TGW.

Genotyping of avian pathogenic Escherichia coli by DNA fragment analysis for the differences in simple sequence repeats

  • Han, Mi Na;Byeon, Hyeon Seop;Han, Seong Tae;Jang, Rae Hoon;Kim, Chang Seop;Choi, Seok Hwa
    • 한국동물위생학회지
    • /
    • 제41권4호
    • /
    • pp.257-262
    • /
    • 2018
  • Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry farms, due to systemic infections leading to lethal colisepticemia. It causes a variety of diseases from air sac infection to systemic spread leading to septicemia. Secondary infection contains opportunistic infections due to immunosuppression disease. Collibacillosis causes the great problems in the poultry industry in Korea. Thus, it is necessary to identify and classify the characteristics of E. coli isolate of chicken origin to confirm the diversity of symptoms and whether they are transmitted among the farms. Fragment analysis is identify the difference in the number of Variable-Number Tandem-Repeats (VNTRs) for genotyping. VNTRs have repeating structure (Microsatellite, Short tandem repeats; STR, Simple sequence repeats; SSR) in the chromosome. This region can be used as a genetic marker because of its high mutation rate. And various lengths of the amplified DNA fragment cause the difference in the number of repetition of the DNA specific site. The number of repetition sequences indicates the separated size of fragments, so the each fragments can be distinguished by specific samples. The results of the sample show that there is no difference in six microsatellite loci (yjiD, aidB, molR_1, ftsZ, b1668, yibA). There are differences among the farms in relation of the number of repetitions of other six microsatellite loci (ycgW, yaiN, yiaB, mhpR, b0829, caiF). Four (ycgW, yiaB, b0829, caiF) of these six microsatellite loci show statistically significant differences (P<0.05). It means that the analysis using four microsatellite loci including ycgW, yiaB, b0829, and caiF can confirm among the farms. Five E. coli samples in one farm have same SSR repetition at all markers. But, there are significant differences from other farms at Four (ycgW, yiaB, b0829, caiF) microsatellite loci. These results emphasize again that the four microsatellite loci makes a difference in the amplified DNA fragments, enabling it to be used for E. coli genotyping.

Genetic diversity analysis of tea (Camellia sinensis (L.) O. Kuntze) germplasm in Korea genebank

  • 현도윤;이정로;조규택;;신명재;이경준
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.63-63
    • /
    • 2019
  • Tea plant (Camellia sinensis (L.) O. Kuntze) has been cultivated widely in many developing Asian, African, and South American countries, where it is the most widely consumed beverage in the world next to water. It has critical importance to understand the genetic diversity and population sturcutre for effective collection, conservation, and utilization of tea germplasm. In this study, 410 tea accessions collected from South Korea were analyzed using 21 SSR markers. Among 410 tea accessions, 85.4% (310 accessions) accessions were collected from Jeollanam-do. A total of 286 alleles were observed, and the genetic diversity and evenness were estimated to be averagely 0.79 and 0.61, respectively, across all the tested samples. Using discriminant analysis of principal components, the four clusters were detected in 410 tea accessions. Among them, cluster 1 showed higher frequency of rare alleles (less than 1%) than other clusters. Using calculation of the index of association and rbaD value, each cluster showed a clonal mode of reproduction. The result of AMOVA showed that most of the variation observed was within populations (99%) rather than among populations (1%). Our results might contribute to provide data about genetic diversity for the conservation of tea germplasm and for future breeding programs.

  • PDF

Analysis of Molecular Variance and Population Structure of Sesame (Sesamum indicum L.) Genotypes Using Simple Sequence Repeat Markers

  • Asekova, Sovetgul;Kulkarni, Krishnanand P.;Oh, Ki Won;Lee, Myung-Hee;Oh, Eunyoung;Kim, Jung-In;Yeo, Un-Sang;Pae, Suk-Bok;Ha, Tae Joung;Kim, Sung Up
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.321-336
    • /
    • 2018
  • Sesame (Sesamum indicum L.) is an important oilseed crop grown in tropical and subtropical areas. The objective of this study was to investigate the genetic relationships among 129 sesame landraces and cultivars using simple sequence repeat (SSR) markers. Out of 70 SSRs, 23 were found to be informative and produced 157 alleles. The number of alleles per locus ranged from 3 - 14, whereas polymorphic information content ranged from 0.33 - 0.86. A distance-based phylogenetic analysis revealed two major and six minor clusters. The population structure analysis using a Bayesian model-based program in STRUCTURE 2.3.4 divided 129 sesame accessions into three major populations (K = 3). Based on pairwise comparison estimates, Pop1 was observed to be genetically close to Pop2 with $F_{ST}$ value of 0.15, while Pop2 and Pop3 were genetically closest with $F_{ST}$ value of 0.08. Analysis of molecular variance revealed a high percentage of variability among individuals within populations (85.84%) than among the populations (14.16%). Similarly, a high variance was observed among the individuals within the country of origins (90.45%) than between the countries of origins. The grouping of genotypes in clusters was not related to their geographic origin indicating considerable gene flow among sesame genotypes across the selected geographic regions. The SSR markers used in the present study were able to distinguish closely linked sesame genotypes, thereby showing their usefulness in assessing the potentially important source of genetic variation. These markers can be used for future sesame varietal classification, conservation, and other breeding purposes.

무 원종 대량생산을 위한 경정배양 (Shoot-tip culture for massive production of radish foundation seeds)

  • 박한용;김유경;최수빈;모숙연
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.82-88
    • /
    • 2023
  • 순도가 균일한 원종을 대량생산하기 위해 원원종 종자를 이용하여 조직배양 기술 중 경정배양을 이용하였다. 실험 재료로는 원원종 계통 RA2와 RA4 계통을 사용하였다. BA 호르몬 사용의 경우 RA2 계통의 유묘에서는 BA 1.33 uM 첨가 배지에서 평균 14.67개로, 성묘의 경우 BA 1.78 uM 첨가 배지에서 평균 11.33개로 가장 많은 개수의 multi-shoots이 형성되었으며, RA4 계통 경우 유묘에서는 BA 2.22 uM 첨가 배지에서 평균 11.67개로, 성묘에서는 BA 1.33 uM 첨가 배지에서 평균 13.67개로 가장 많은 multi-shoots이 형성되었지만 BA 농도별로 유의수준에서 거의 차이가 없는 것으로 나타났다. TDZ 호르몬 사용의 경우 RA2 계통은 TDZ 농도가 증가할수록 multi-shoots의 수가 증가하여 TDZ 0.45 uM 첨가 배지에서 가장 많은 multi-shoots가 형성되었으나(유묘 7.0개, 성묘 3.0개), TDZ 2.25 uM 부터는 거의 multi-shoots가 형성되지 않았다. RA4 계통은 유묘의 경우 거의 multi-shoots이 생성되지 않았고 성묘의 경우 TDZ 0.23, 0.45 uM 첨가 배지에서 3.7개의 multi-shoots이 생성되었으나 그 이상의 농도에서는 유묘에서와 같이 생성되지 않았다. 생성된 multi-shoots를 계대배양하여 생장한 조직배양묘를 SSR marker를 사용하여 원종계통과 비교분석한 결과 생성된 조직배양묘에서 변이의 양상이 약하게 보인 것이 있었으나 돌연변이체로 나타난 것은 없었다. 또한 뿌리 발근에 있어서는 RA2, RA4 계통 모두 대체적으로 IBA 4.9 uM 첨가된 배지에서 발근율, 뿌리 수, 뿌리발달 정도 등이 가장 좋았다.

찰옥수수 자식계통의 주요 품질특성과 관련된 SSR마커 (SSR Marker Related to Major Characteristics Affected Kernel Quality in Waxy Corn Inbred Lines)

  • 정태욱;문현귀;손범영;김선림;김순권
    • 한국작물학회지
    • /
    • 제51권spc1호
    • /
    • pp.185-192
    • /
    • 2006
  • 작물과학원에서 육성한 찰옥수수 자식계통들을 대상으로 SSR 마커를 이용하여 자식계통간 유연관계 등을 분석하고 계통군화 시켜 교배 모, 부본 선정의 기초 자료로 이용하고자 하였으며 종실의 품질특성들과 연관되어 있는 분자마커를 선발하여 품질육종의 효율성을 높이고 고품질 찰옥수수 품종육성에 이용하기 위한 연구결과를 요약하면 다음과 같다. 1. 64개 자식계통의 genomic DNA증폭에 의해 30개 microsatellite 마커를 이용하여 전체 225개, 마커 별로는 $2{\sim}13$개, 평균 7.5개의 alleles가 관찰되었으며 PIC값은 $0.14{\sim}0.87$의 범위였고 평균 0.69의 다양성을 보였다. 2. 증폭된 밴드의 유무를 이용하여 계통간 유전적 거리를 구하였으며 이를 근거로 군집분석을 한 결과 9개 군으로 분류할 수 있었고 특히 I군의 경우 64계통 중 41%인 26계통이 포함되었으며 나머지 군들은 $3{\sim}9$개의 자식계통이 포함되었다. 3 유전적 거리에 의한 자식계통군의 분류 결과를 기존에 육성된 교잡종들과 비교해 본 결과 찰옥1호의 모, 부본인 KW1, KW2는 각각 I군과 VII군, 찰옥2호의 모, 부본인 KW7, KW3은 각각 I군과 VIII군에 속해 있었으며, 고식미 교잡종인 찰옥4호는 모, 부본인 KW33과 KW35는 I군과 IV군, 일미찰의 모, 부본인 KW51, KW35도 I군과 IV군에 속해 있어서 원연간에 교잡이 이루어 진 것으로 나타났다. 4. 30개 SSR 마커에 의해 발생된 대립인자와 품질관련 특성들과의 연관성을 분석한 결과 아밀로펙틴 함량 등 8개 형질과 관련되는 마커를 선발하였다. 이 마커들 중 umc 1019는 아밀로펙틴, 단백질 함량과 연관되었으며 umc1020은 아밀로펙틴 함량, 최고점도 및 전체적 기호도와 관련되었고 bnlg1537은 백립중, 립장, 립폭과 관련이 높은 것으로 나타났다.작할 수 있었다. 이 환원유(還元乳)를 일정(一定)한 조건(條件)에서 한국 영양권장량과 비교(比較)했을 때, 모든 영양소(營養素)를 충분(充分)히 공급(供給)할 수 있었는데 나이아신 만이 권장량에 미달하였다. 또한 분유(粉乳) C에서 철분이 약간 미달했고, 비타민A는 1일(日) 권장량에 6배(倍)나 되어 앞으로 재검토(再檢討)를 요(要)하는 문제라 하겠다. 4. 아미노산(酸) 조성(組成)은 분유간(粉乳間)에 다수 차계(差界)를 보였으며, 필수(必須)아미노산(酸) 조성(組成)이 우유에 가까웠던 점(點)으로 보아 아미노산 조절(調節)은 없었는듯 하였다. 발효유의 아미노산(酸) 조성(組成)은 우유와 거의 같았다. 5. 지방산(脂肪酸)의 조성(組成)은 전체(全體) 포화지방산대(飽和脂肪酸對) 불포화지방산(不飽和脂肪酸)의 비(比)가 3종(種)의 분유간(粉乳間)에 비슷하였고, 특히 필수지방산(必須脂肪酸)의 조성(組成)이 모유(母乳)와 유사(類似)하거나 높아 이들 지방산(脂肪酸)이 첨가(添加)되어 있음을 나타냈다. 이상의 여러 결과(結果)들을 종합(綜合)할 때 3종(種)의 분유간(粉乳間) 영양효과(營養效果)는 비슷하고, 조제분유(調製粉乳)의 일반조성(一般組成), 무기질(無機質) 및 지방산(脂肪酸) 조성(組成)에 있어서 모유(母乳)에 상당히 접근(接近)하는 것으로 믿어진다. 한편 철분, 비타민 등(等)의 강화(强化)로서 단일식품(單一食品)으로서의 효용성(效用性)을 높인 것은 사실이나, 일부 영양소(營養素)의 지나친 강화(强化)문제는 좀더 신중히 다루어져야 할 것으로 생각된다.성(構成) polyol은 glycerol뿐이 었으며 세포외(細胞外) 지질(脂質)의 구성(構成) polyol은 glycerol, mannitol, xylitol 및 arabitol 이었다.로 보아 glucosamine 2분자(分子)에 한계의 인(燐)이 monoester결합(結合)을 하고 있음을 알 수 있다. 8. spot A화합물(化合物)은 glucosaminiyl