• 제목/요약/키워드: SSD Model

검색결과 64건 처리시간 0.025초

METEOROID STREAM 입자들의 궤도 운동 시뮬레이션 TOOL 개발 (DEVELOPMENT OF SIMULATION TOOL FOR ORBITAL MOTION OF METEOROID STREAM PARTICLES)

  • 김방엽
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.107-116
    • /
    • 2000
  • 본 연구는 지구 공전 궤도 근처의 Leonid의 출현 빈도와 속도 등을 예측하기 위한 연구의 초기 단계로서 meteoroid에 대한 기초 자료 조사와 더붙어 기존에 알려져 있는 meteoroid 입자의 분출 속도 모텔과 섭동 모델로부터 meteoroid의 운동 방향과 속도를 컴퓨터로 계산하기 위한 프로그램을 개발하고 이것을Leonid stream에 적용해 보았다. 입자의 초기 속도 모델로는Jones의 분출속도 분포모델을 사용하였으며, meteoroid의 궤도 운동 모델에는 태양과 달, 지구를 비롯한 각 행성들의 섭동 모델이 포함되었다. 태양계 천체들의 Ephemeris를 구하기 위해 JPL (Jet Propulsion L Laboratory)의 SSD (Solar System Dynamics) Laboratory에서 개발된 DE405 Solar System E Ephemeris 데이터 파일을 사용하였다. 이외에 중요한 섭동 요소로써 태양 복사압을 고려하였으며, 적분 알고리즘으로는 8차 Runge-Kutta 방법을 사용하였다.

  • PDF

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석 (Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation)

  • 김재인;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1251-1260
    • /
    • 2018
  • 항공영상으로 제작한 고품질의 해빙표면모델은 인공위성 기반 원격탐사 기술 개발을 위한 현장자료 뿐만 아니라 북극 해빙의 정밀한 형상학적 변동 특성 분석에도 효과적으로 사용될 수 있다. 그러나 해빙 표면의 부족한 텍스쳐 정보는 영상정합을 어렵게 만드는 요인으로 작용한다. 이에 본 논문에서는 고품질 해빙표면 모델 생성을 위한 일환으로 균질한 해빙 표면에 대한 정합비용함수들의 성능 비교 분석을 수행한다. 정합비용함수로는 영상 도메인의 SSD(sum of squared differences), NCC(normalized cross-correlation), ZNCC(zero-mean normalized cross-correlation), 주파수 도메인의 PC(phase correlation), OC(orientation correlation), GC(gradient correlation)를 분석하였다. 텍스쳐 정보량에 따른 정합 성능을 보다 명확하고 객관적으로 분석하기 위해 객체 공간 기반 정합 기법의 원리를 바탕으로 하는 새로운 평가 방법을 도입하였다. 실험결과는 해빙 표면과 같이 텍스쳐 정보가 희박한 지역에 대해서는 정합 지역에 따라 적합한 크기의 탐색창을 가변적으로 적용해야만 정합의 신뢰성 및 정확도 확보가 가능함을 보여주었다. 정합비용함수들 사이에서는 NCC와 ZNCC가 텍스쳐 정보 변화에 대해서 가장 우수한 성능을 나타냈다.

확률적 확산을 이용한 스테레오 정합 알고리듬 (New stereo matching algorithm based on probabilistic diffusion)

  • 이상화;이충웅
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.105-117
    • /
    • 1998
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The probabilistic models are independence and similarity among the neighboring disparities in the configuration.The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into the some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. And, we proposed new probabilistic models in order to simplify the joint probability distribution of disparities in the configuration. According to the experimental results, the proposed algorithm outperformed the other ones, such as sum of swuared difference(SSD) based algorithm and Scharstein's method. We canconclude that the derived formular generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation, and the propsoed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to 0.01% of the generalized formula.

  • PDF

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

인공지능 서비스 운영을 위한 시스템 측면에서의 연구 (A Study on the System for AI Service Production)

  • 홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.323-332
    • /
    • 2022
  • AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.

효율적인 객체 검출을 위해 Attention Process를 적용한 경량화 모델에 대한 연구 (A Study on Lightweight Model with Attention Process for Efficient Object Detection)

  • 박찬수;이상훈;한현호
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.307-313
    • /
    • 2021
  • 본 논문에서는 기존 객체 검출 방법 대비 매개변수를 감소시킨 경량화 네트워크를 제안하였다. 현재 사용되는 검출 모델의 경우 정확도 향상을 위해 네트워크 복잡도를 크게 늘렸다. 따라서, 제안하는 네트워크는 EfficientNet을 특징 추출 네트워크로 사용하였으며, 후속 레이어는 저수준 세부 특징과 고수준의 의미론적 특징을 활용하기 위해 피라미드 구조로 형성하였다. 피라미드 구조 사이에 attention process를 적용하여 예측에 불필요한 노이즈를 억제하였다. 네트워크의 모든 연산 과정은 depth-wise 및 point-wise 컨볼루션으로 대체하여 연산량을 최소화하였다. 제안하는 네트워크는 PASCAL VOC 데이터셋으로 학습 및 평가하였다. 실험을 통해 융합된 특징은 정제 과정을 거쳐 다양한 객체에 대해 견고한 특성을 보였다. CNN 기반 검출 모델과 비교하였을 때 적은 연산량으로 검출 정확도가 향상되었다. 향후 연구로 객체의 크기에 맞게 앵커의 비율을 조절할 필요성이 사료된다.

Sign Language Translation Using Deep Convolutional Neural Networks

  • Abiyev, Rahib H.;Arslan, Murat;Idoko, John Bush
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.631-653
    • /
    • 2020
  • Sign language is a natural, visually oriented and non-verbal communication channel between people that facilitates communication through facial/bodily expressions, postures and a set of gestures. It is basically used for communication with people who are deaf or hard of hearing. In order to understand such communication quickly and accurately, the design of a successful sign language translation system is considered in this paper. The proposed system includes object detection and classification stages. Firstly, Single Shot Multi Box Detection (SSD) architecture is utilized for hand detection, then a deep learning structure based on the Inception v3 plus Support Vector Machine (SVM) that combines feature extraction and classification stages is proposed to constructively translate the detected hand gestures. A sign language fingerspelling dataset is used for the design of the proposed model. The obtained results and comparative analysis demonstrate the efficiency of using the proposed hybrid structure in sign language translation.

방사선조사가 타액선 도관세포에 미치는 영향에 관한 전자현미경적 연구 (AN ELECTRON MICROSCOPIC STUDY OF THE IRRADIATION EFFECTS ON THE RAT PAROTID INTERCALATED DUCT CELLS)

  • 최원재;이상래
    • 치과방사선
    • /
    • 제18권1호
    • /
    • pp.137-147
    • /
    • 1988
  • This study was designed to investigate the effects of irradiation on the salivary ductal cells, especially on the intercalated ductal cells of the rat parotid glands. For this study, 36 Sprague-Dawley strain rats were irradiated on the head and neck region with absorbed dose of 15Gy by Co-60 teletherapy unit, Picker's model 4M60. The conditions irradiated were that field size, SSD, dose rate and depth were 12×5㎝m, 50㎝, 222 Gy/min. and 1㎝. respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12 hours and 1, 3, 7 days after the irradiation and the changes of the irradiated intercalated duct cells of the parotid glands were examined under the light and electron microscope. The results were as follows: 1. Under the light and electron microscope, the nucleus, mitochondria and secretory granules showed severe changes in the early stage after irradiation and the most severe cellular de- generations were observed 2 hours after irradiation, but the repair processes began from 6 hours after irradiation. 2. Under the electron microscope, loss of the nuclear membranes, derrangement of the chromosomes, swelling and destruction of the secretory granules, and widening of the intercellular spaces were observed after irradiation. 3. Under the light microscope, atrophy and irregular proliferation of the ductal cells, cuboidal metaplasia, hyperchromatism, and the construction or obstruction of the lumen were observed after irradiation.

  • PDF