• Title/Summary/Keyword: SSA-PID algorithm

Search Result 2, Processing Time 0.015 seconds

Analysis and Design of a Separate Sampling Adaptive PID Algorithm for Digital DC-DC Converters

  • Chang, Changyuan;Zhao, Xin;Xu, Chunxue;Li, Yuanye;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2212-2220
    • /
    • 2016
  • Based on the conventional PID algorithm and the adaptive PID (AD-PID) algorithm, a separate sampling adaptive PID (SSA-PID) algorithm is proposed to improve the transient response of digitally controlled DC-DC converters. The SSA-PID algorithm, which can be divided into an oversampled adaptive P (AD-P) control and an adaptive ID (AD-ID) control, adopts a higher sampling frequency for AD-P control and a conventional sampling frequency for AD-ID control. In addition, it can also adaptively adjust the PID parameters (i.e. $K_p$, $K_i$ and $K_d$) based on the system state. Simulation results show that the proposed algorithm has better line transient and load transient responses than the conventional PID and AD-PID algorithms. Compared with the conventional PID and AD-PID algorithms, the experimental results based on a FPGA indicate that the recovery time of the SSA-PID algorithm is reduced by 80% and 67% separately, and that overshoot is decreased by 33% and 12% for a 700mA load step. Moreover, the SSA-PID algorithm can achieve zero overshoot during startup.

SQUIRREL SEARCH PID CONTROLLER ALGORITHM BASED ACTIVE QUEUE MANAGEMENT TECHNIQUE FOR TCP COMMUNICATION NETWORKS

  • Keerthipati.Kumar;R.A. KARTHIKA
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.123-133
    • /
    • 2023
  • Active queue management (AQM) is a leading congestion control system, which can keep smaller queuing delay, less packet loss with better network utilization and throughput by intentionally dropping the packets at the intermediate hubs in TCP/IP (transmission control protocol/Internet protocol) networks. To accelerate the responsiveness of AQM framework, proportional-integral-differential (PID) controllers are utilized. In spite of its simplicity, it can effectively take care of a range of complex problems; however it is a lot complicated to track down optimal PID parameters with conventional procedures. A few new strategies have been grown as of late to adjust the PID controller parameters. Therefore, in this paper, we have developed a Squirrel search based PID controller to dynamically find its controller gain parameters for AQM. The controller gain parameters are decided based on minimizing the integrated-absolute error (IAE) in order to ensure less packet loss, high link utilization and a stable queue length in favor of TCP networks.